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Abstract. The widespread adoption of digital twins gave rise to emerg-
ing systems of interconnected digital twins, often dubbed aggregated
or hierarchical digital twins. In such emerging systems, interoperability
of digital twins is key in determining the capabilities and qualitative
properties of the emerging system. In this paper, we report on a panel
discussion that took place at the 2023 Annual Simulation Conference
with four esteemed experts representing four distinct perspectives on the
topic: strategic (why aggregated digital twins matter?), technical (how
co-simulation supports a distributed set of concerns over multiple digital
twins?), standardization (how standards enable interoperability?), and
organizational (how organizations deal with digital twinning scenarios?).
We report the panelists’ main arguments and synthesize them into a dis-
cussion. The main takeaway of the panel is that contrary to the state
of affairs in digital twinning that limits interoperability to low levels,
there is a clear need to reach higher levels of interoperability in digital
twinning scenarios that necessitate a distributed approach. Moreover,
there are emerging solutions to achieve these higher levels. To provide
researchers with tangible leads, we distill challenges and success factors,
and recommend future research directions in digital twin interoperability.
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1 Introduction

Digital twins are virtual mirrors of physical assets, connected through real-time
data streams and control loops to their physical counterparts [40]. They reflect
the current state of the physical asset and offer safe, cost-efficient, and time-
efficient alternatives for interacting with the physical system, such as for virtual
experimentation. The control loop enables the digital twin to actuate the physical
system based on analysis and simulation, useful in scenarios like run-time opti-
mization, real-time reconfiguration, and intelligent adaptation. Owing to their
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advantages, digital twins have seen rapid adoption across various domains, in-
cluding smart manufacturing [39], smart healthcare [1], and urban ecosystems [8].

As the complexity of physical systems increases, concerns about monolithic
digital twins become significant. Decomposing them into specialized units with
a finer-grained scope can replace the accidental complexity of the digital twin
with better-managed essential complexity [38]. This enhances the separation
of concerns, reconfigurability, and scalability when mirroring complex physical
systems with multiple digital twins [27]. This need for compositionality in digital
twins leads to a System of Digital Twins (SoDT) [42], similar to the dynamics
of systems-of-systems. In SoDTs, digital twins may not be designed by the same
vendor or implemented using the same technology. In such scenarios, ensuring the
ability to exchange information despite the lack of design convergence is crucial
to harness the benefits of task-specific digital twins [19]. Interoperability between
individual digital twins within an aggregated structure is key to leveraging the
power of specialized, domain-specific digital twins. The widespread adoption of
digital twins has led to numerous vendors offering digital twin frameworks and
platforms. However, the lack of technological convergence and common APIs
makes digital twin compositionality a challenging task.

A definition of interoperability

We rely on the definition of interoperability by the ISO/IEC 25010 standard:
“degree to which two or more systems, products or components can exchange
information and use the information that has been exchanged”.

6

There are two crucial elements in this definition: (i) the ability to exchange
information and (ii) the ability to use the exchanged information. Both are
challenging in general SoDTs as digital twins in such structures lack any pre-
meditated convergence mechanisms. The Levels of Conceptual Interoperability
Model framework [49] defines seven such convergence levels, ranging from the
low level of technical interoperability focusing on integrability with mere bits
and bytes being exchanged, to the highest level of conceptual interoperability
focusing on composability with high-context information being exchanged. Cur-
rently, SoDTs are far from the highest levels of interoperability, mostly relying on
ad-hoc alignment of APIs, stemming from community convergence rather than
proper design for interoperability. With the surging interest in digital twins in
a wide array of domains, and with the need for higher levels of interoperability
on full display, it is important to understand the challenges and success factors
of fostering interoperability among digital twins.

Related Work

Interoperability poses a significant challenge in DT engineering [2]. Two recent
surveys merit attention for their comparison of various digital platforms, par-
ticularly regarding interoperability. Gil et al. [23] examine 14 open-source DT
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frameworks across 10 dimensions, classified into six groups. They present a case
study involving 5 DT frameworks, comparing their capabilities and discussing
advantages and limitations, including built-in simulations, data analytics, and
theory-to-practice transition. In a comparative analysis, Lehner et al. [35] assess
three popular DT platforms: AWS, IoT Greengrass, and Microsoft Azure DTs,
alongside Eclipse Ditto-Hono-Vorto. Their study spans 13 requirements and 7
quality characteristics.

Proposing a maturity framework for DTs, Klar et al. [31] argue that inter-
operable DTs represent the highest level of maturity. They highlight connected,
interoperable DTs as a departure from system-specific, monolithic ones, enabling
complex structures of autonomous digital units of computation. Typical barriers
to interoperability, including data sharing and standardization, are identified.

The significance of DT interoperability in Industry 4.0 is underscored by Re-
belo Moreira [41], positioning SoDTs as crucial facilitators of interaction and
decision-making among silos driven by legacy equipment. Our panel report ad-
dresses this issue, emphasizing the necessity for an increased number of DTs in
real engineering processes.

Ferko et al. [22] review 21 academic works to analyze technological choices
and degrees of interoperability, focusing on data exchange. Their findings indi-
cate that current DT architectures excel in achieving semantic interoperability
but often overlook higher levels of semantic complexity, such as information
and knowledge management. This takeaway is in line with our panel report:
achieving higher levels of interoperability in federated DTs presents challenges
related to extra-functional properties of accuracy, trust, security, and privacy;
and recommend the revision of standards to address these challenges. Many of
the above frameworks propose or adopt technical frameworks and standards. For
example, Microsoft Azure DTs includes the Digital Twin Definition Language
(DTDL)

7
, a common schema for data models and DT structures. Twined

8
is an-

other definition language similar to DTDL. Asset Administration Shell (AAS)
provides a generic meta-model for aligning with industrial standards and has
several open-source implementations, including Eclipse BaSyx

9
, PYI40AAS

10
,

SAP I4.0 AAS
11
, and the AASX Package Explorer

12
, each developed by differ-

ent entities. Finally, CPS-Twinning
13

includes AutomationML documents in the
core of the solution to deploy the DTs in simulated networks and is intended to
cover physical simulations.
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The panel – four complementary perspectives

To investigate the challenges and success factors of interoperability of digital
twins, we organized a panel discussion at the digital twins track of the 2023 An-
nual Modeling and Simulation Conference (ANNSIM) in May 2023. We invited
four esteemed panelists who represented four complementary perspectives.
– Strategic perspective: digital twins with multiplicities and why do aggre-

gated digital twins matter? – Dawn Tilbury (University of Michigan, US).
– Technical perspective: how does co-simulation support concerns distributed

over multiple digital twins? –Claudio Gomes (Aarhus University, Denmark).
– Standardization perspective: the role of standards in interoperability –

Guodong Shao (National Institute of Standards and Technology, US).
– Organizational perspective: how do organizations deal with advanced dig-

ital twinning scenarios, specifically in the light of various data challenges –
Bassam Zarkout (IGnPower Inc., Canada).

The strategic perspective articulates why interoperability is an issue and
identifies two such areas of problems: (i) multiple digital twins for components
that are integrated/aggregated into a system digital twin, and (ii) multiple dig-
ital twins for the same component/system, with different outputs (e.g., one to
predict/estimate quality and the other to predict/estimate needed maintenance).
The technical and standardization perspectives focus on how interoperability
could be approached. The technical perspective builds on the assumption that
complex digital twin scenarios are often enabled by simulators [4] and identifies
co-simulation as the viable option to support simulation under interoperability
constraints. The standardization perspective builds on the assumption that sin-
gle digital twins in a SoDT are not necessarily provided by the same supplier
and convergence might not be attained without proper standards. Finally, the
organizational aspect focuses on what should be done by organizations to put
digital twin solutions in place, especially SoDTs with interoperability concerns.

Panelists were asked to reflect on a set of apriori agreed questions that span
a sufficiently wide scope, allowing us to draw meaningful conclusions from the
discussion. In this paper, we report and synthesize these arguments and identify
key challenges, success factors, and impactful research directions ahead. The
main takeaway of the panel is that contrary to the state of affairs in digital
twinning that limits interoperability to low levels, there is a clear need to reach
higher levels of interoperability in digital twinning. Moreover, there are emerging
solutions to achieve these higher levels—three of which are discussed in this
paper: co-simulation, standardization, infonomics.

2 Strategic view: multiplicities of digital twins
(Dawn Tilbury)

A digital twin is a virtual replica of a physical object or process, its “twin”. A
digital twin needs to be synchronized with its physical counterpart through the
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collection of real-time data (at appropriate intervals, which will depend on the
application) and should output some useful metric about the condition or state
of its physical twin, along with a confidence estimate in that metric [39].

A digital twin uses some form of a model to create its output and can be
built using subject-matter expertise, data analytics, and/or artificial intelligence.
Although the term “digital twin” is more recent, in reality, what we now call
“digital twins” have existed for many years. State estimators for control systems,
virtual metrology, and predictive maintenance systems are examples of existing
software systems that fit the digital twin definition. For example, a state estima-
tor, e.g., Kalman filter [50], takes the inputs and outputs (u and y) of a system
modeled as a linear system of differential or difference equations ẋ = Ax + Bu
and produces an estimate of the state x over time. Virtual metrology [18] uses
measurements from semiconductor fabrication to predict the quality of a process
without needing to measure every wafer.

As systems become more complex, it can be advantageous to build multiple
digital twins for the sub-components of a system and then aggregate them to-
gether into a digital twin for the system. For this type of aggregation, the digital
twins need to have the same purpose. Consider a digital twin that predicts the
remaining useful life (RUL) of a system, that could be used for predictive main-
tenance. For example, in a pump with a rotating motor, there could be a digital
twin for each bearing in the motor, another digital twin for the shaft, and one
for the seal. Each digital twin could collect data from its respective component
(temperature, vibration, pressure, flow, etc.) and use that data, together with
a model, to predict the RUL. The model could be as simple as a threshold (if
the vibration is greater than X then predict failure within 1 week) or could be
tuned based on historical data to give a more precise prediction with greater
confidence. The system digital twin would aggregate all of the outputs of the
sub-components to predict the RUL of the pump. Again, a simple aggregation
could just choose the minimum failure time, or a more complex aggregation
could use a weighted average.

A more complex scenario could include a manufacturing cell, including mul-
tiple Computer Numerical Control (CNC) machine tools and robots that move
the parts between the different machines. Each machine and robot may have a
digital twin that predicts its RUL, based on data from its internal control system
and perhaps external sensors. To integrate these digital twins into a prediction
of the RUL for the cell, they must be able to interoperate – the outputs must be
presented in an understandable format so that the integrator who puts the cell
together can create the cell-level (and also a system-level) digital twin. In the
future, the digital twins for the machines and robots may be supplied by their
vendors, and trained on historical data for these particular machines operating
in different contexts. In this case, the context or environmental parameters must
either be measurable by the digital twin or specified by the integrator.

In addition to aggregating digital twins in a hierarchy for a given system,
each component (or sub-component) could have multiple digital twins with dif-
ferent output metrics (and confidence levels). In a multi-axis machine tool, each
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motor could have a digital twin predicting its RUL as well as one estimating its
accuracy or tolerance. The overall precision of the machine could be estimated
by combining the different axes, appropriately for the relevant geometry.

As computing, storage, and bandwidth become more accessible and afford-
able, the amount of data available to be used in digital twins for improving
manufacturing performance is increasing exponentially. Taking advantage of the
data requires significant effort by subject-matter experts, who understand the
processes, what metrics are important, and what measurements are most likely
to be useful for the intended purpose. Once a digital twin has been successfully
verified and deployed, it needs to be maintained and potentially updated (espe-
cially if the context changes). Ideally, the successful digital twin can be used as
a template to create digital twins for similar processes, or in similar contexts.

A digital twin framework that includes the eight “ilities” of Modularity, Re-
usability, Interoperability, Interchangeability, Verification and Validation (V&V)
capability, Maintainability, Extensibility, and Sustainability enables the success-
ful lifecycle of a collection of digital twins to exploit the promise of translating
manufacturing data into manufacturing intelligence [39]. Many open research
questions consider how best to realize these properties, from transfer learning to
uncertainty analysis and automation.

3 Technical view: co-simulation for interoperability
(Claudio Gomes)

Co-simulation is the field that studies how to conduct the coupling of heteroge-
neous models through their behavior traces, i.e., through their simulations. It is
therefore the key to simulator interoperability. The following aspects constitute
the essential elements to perform a co-simulation and thus allow simulator inter-
operability: simulators that allow explicit control of when (not how) to progress
in simulated time; a standardized API for controlling such progression and ac-
cessing variables; and an orchestration algorithm that uses such an API.

While there are many appropriate co-simulation interfaces – Discrete Event
System Specification (DEVS), Simulink’s S-Function, the interface used in Ptolemy [6],
the interface used in CyPhySim [34], the High-Level Architecture (HLA) – in this
manuscript, we focus on an interface that has been proposed by industry and is
currently being adopted by more than 170 companies for modeling their simula-
tion tools. The functional mockup interface (FMI) standard

14
was proposed in

2007 and is currently in version 3.0 [28]. It defines a container and an interface to
exchange dynamic simulation models using a combination of XML files, binaries,
and C code, distributed as a ZIP file, called a Functional Mockup Unit (FMU).
Under the FMI standard, simulators declare the operations corresponding to the
API. We refer the reader for more details to Gomes et al. [24].
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Role of Co-simulation in Digital Twins

We envision the emergence of standardized interfaces to interact with digital
twins. If digital twins leverage dynamic models to make sense of the data as well
as provide a number of other useful services such as monitoring, fault diagnosis,
and self-adaptation, then the role of co-simulation in digital twins is clear: to
provide a standard interface to interact with models. Every application of sim-
ulation in digital twins has an analogous counterpart with co-simulation when
the systems under study are coupled and heterogeneous.

The work of Feng et al. [20, 21] describes a number of services that are based
on modeling and simulation, derived from the most common requirements for
digital twins identified in surveys [7, 9, 36], each of which is enabled by using the
co-simulation interface. These services play crucial roles in the functioning of a
digital twin. They include (1) state estimation, which combines data and simula-
tions for accurate evaluation of model variables; (2) visualization, which displays
relevant variables and physical twin properties for a comprehensive understand-
ing; (3) decision-making support, allowing simulations and evaluation of different
configurations for the physical twin; (4) monitoring, assessing performance, and
detecting anomalies or faults; (5) predictive maintenance, identifying long-term
trends for breakdown prediction; (6) fault diagnosis, classifying and explaining
detected faults; and (7) self-adaptation, enabling automated or semi-automated
adjustments to cope with changing environments.

In the above services, the role of co-simulation is to decouple the technol-
ogy used to simulate models from the digital twin implementation. Its role in
decision-making is to provide the decision-maker with insights into the current
and potential future states of the physical twin. The state estimation service
will often correct the predictions made by a model in order to align them better
with the observed data and thereby obtain a more accurate estimate of all other
variables in the model that affects those predictions. The co-simulation interface
is, therefore, important for the development of simulation tool agnostics state
estimation services because these services rely only on the co-simulation inter-
face to perform the prediction and correction. Further implementations of state
estimation using the FMI standard are presented in [25, 33, 43].

In summary, co-simulation and the standardized interface it promotes allow
digital twin technology to be decoupled from modeling and simulation tools.

Co-simulation and Interoperability in Digital Twins

As written in the previous section, one of the responsibilities of the digital twin
is to keep track of the physical twin’s environment (the state estimation example
we have used is focused on sensing latent variables in the physical twin but it
could also be used to sense latent variables in the environment of the physical
twin). In scenarios where a physical twin’s environment includes other physical
twins which may have their own digital twins, it is reasonable to conclude that
there are advantages for the former’s digital twin to be able to interact with the
latter’s digital twins. As proposed by Esterle et al. [19], there might be two main
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types of operations to be carried out between digital twins: (1) model exchange
operations happen when a digital twin requests a model from another; and (2)
service request operations happen when a digital twin invokes an operation to
be executed in another. An example of model exchange is a digital twin asking
for a model of another physical twin that can be used for predictions of the
future behavior of that physical twin. An example of a service request operation
is subscribing to the sensory data from another physical twin.

The role of co-simulation is more prominent in case 1 as the model can be
transferred as an FMU. As for case 2, the FMI interface is poorly suited, because
we envision many digital twins to be running 24/7, undergoing updates, and
generally present non-functional requirements not covered in the FMI standard.

The following represents the most important lesson learned from the stan-
dardization of co-simulation interfaces: Intellectual Property (IP) protection
based on exchangeable black box models is not seen as being strong enough
by the industry. The main reason is that, given the freedom to interact with a
simulator as much as possible, it is theoretically possible to learn some of its
model’s underlying structure using system identification techniques [30]. Discus-
sions with industrial partners also reveal the need for a way to control access
to simulators to prevent abuse. This leads to solutions where the simulation of
a particular company remains on-premises and requests can be made for sim-
ulations. This further aggravates issues such as cyber security and naturally
presents performance challenges due to the increased latency.

The above challenges suggest the following questions. (1) What are the es-
sential operations for a digital twin interface to enable the corporation and in-
teroperability between digital twins? (2) What mechanisms can be put in place
to enable full access control to industrial partners who own a particular digital
twin while at the same time not harming security and performance?

4 Standardization: a key enabler (Guodong Shao)

Digital twins involve highly complex collections of data and functional sub-
systems including data collection, data processing, data modeling, data ana-
lytics, data visualization, modeling and simulation, optimization, and control.
Some of these subsystems could be distributed systems. There are significant
challenges to seamlessly integrating these diverse functional subsystems with
data in various formats, e.g., 3D models, sensor data, and simulation results. In
addition, digital twins will need to interact with many other systems to achieve
their goals. Interoperability is essential for the development and adoption of dig-
ital twins as it enables systems to work together. Standardization plays a critical
role in achieving interoperability by defining common rules, protocols, data for-
mats, and interfaces that ensure consistency and compatibility across different
systems. Standards can also enable vendor neutrality, which means that they are
not tied to proprietary technologies. Various vendors and solutions that comply
with the same standards will guarantee compatibility and interchangeability of
components or systems. Standards foster the development of ecosystems and
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markets by creating a level playing field and encouraging innovation on inter-
operable solutions. Using a standard approach, companies do not need custom
integration solutions, which helps reduce development and maintenance costs.

Developing standards can be a complex and time-consuming process. It re-
quires extensive collaboration, consensus-building, and coordination among var-
ious participating stakeholders. Technology evolves rapidly nowadays, so stan-
dardization efforts need to keep up with the latest advancements. The stan-
dardization process typically involves several stages with various stakeholders.
It could take up to several years to complete, depending on the complexity of the
subject matter, the level of consensus required, and the involved stakeholders’
engagement. Although specific steps may vary depending on the context, the
main phases of standardization include: (1) needs identification, (2) work item
proposal, (3) committee identification or formulation, (4) committee drafting,
(5) consensus building, (6) review and comment, (7) approval and publication,
(8) implementation and adoption, and (9) maintenance and revision.

There are some misconceptions that hinder the process of standardization.
For example, (1) adherence to standards may limit companies’ ability to dif-
ferentiate their products or services from their competitors and (2) complying
with standards will require modifying existing systems, processes, and practices,
leading to more costs than benefits. These misconceptions can be addressed
through collaboration, communication, standards education, and implementa-
tion demonstration. The success of a standard relies on several key factors that
contribute to the development, adoption, and effectiveness of standards: (1) con-
sensus and collaboration among stakeholders; (2) clear objectives and scope; (3)
broad stakeholder engagement especially from industries; (4) technical excel-
lence and relevance to address current and emerging challenges; (5) flexibility
and adaptability to accommodate evolving technologies, market dynamics, and
user needs; (6) promotion and education to build confidence, facilitate adoption,
and foster a culture of standardization; (7) continuous improvement and gover-
nance to ensure accountability and the long-term sustainability of standards.

Since digital twins are still in their early stages of maturity, there are fewer
standards specifically developed for digital twins. However, existing standards
for data collection, data security, information modeling, simulation, visualiza-
tion, and networking can be used to support the development of digital twin
applications. For example, OPC Unified Architecture (OPC UA) provides a
standardized framework for secure, reliable, and platform-independent commu-
nication, allowing digital twins to integrate with diverse systems and components
and MTConnect supports digital twin interoperability by providing a semantic
vocabulary for manufacturing equipment, making possible structured contextu-
alized data and avoiding proprietary format. Data sources include equipment,
sensor packages, and other factory floor hardware. A relatively new digital twin
standard published by International Organization for Standardization (ISO),
ISO 23247 - Digital Twin Manufacturing Framework, provides a generic devel-
opment framework that can be instantiated for case-specific implementations of
digital twins in manufacturing. The standard defines a digital twin as “A fit for
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purpose digital representation of an observable manufacturing element (OME)
with synchronization between the element and its digital representation.” An
OME could be any physical artifact, process, or behavior on the manufacturing
floor. ISO 23247 promotes common terminology usage, provides a generic refer-
ence architecture, supports information modeling of OMEs, and synchronizes a
digital twin with its OME, facilitating interoperability and collaboration among
different manufacturing systems and stakeholders (Shao, 2021). The framework
reference architecture, in part 2 of the standard, consists of functional entities
in each domain entity, i.e., User Entity, Digital Twin Entity (DTE), and Device
Communication Entity (DCE). Each functional entity (FE) performs specific
tasks. For example the Interoperability Support FE enables integration between
digital twins and other systems such as Enterprise Resource Planning and Prod-
uct Lifecycle Management systems. The Data Collecting FE in DCE collects
data from OMEs and interacts with relevant systems in DTE and sensors.

There are a few other ongoing standardization efforts on digital twins includ-
ing new additions of ISO 23247, ISO/IEC JTC1 efforts on digital twin defini-
tions, concept, terminology, reference architecture, and maturity models. Object
Management Group (OMG) Industry IoT Consortium (IIC) Digital Twin Inter-
operability Task Group has worked on a technical report on Digital Twin Core
Conceptual Models and Services, the technical content could potentially serve as
standardization requirements and foundational material to facilitate the interop-
erability and reuse of digital twin components. In addition, OMG’s Digital Twin
Consortium is an industry consortium that promotes the development, adoption,
and standardization of digital twin technologies. It brings together organizations
from various sectors to collaborate on advancing digital twin standards and best
practices. The consortium’s activities support cross-domain standardization ef-
forts, creating a common foundation for interoperability and knowledge sharing.

The standardization of digital twins is still evolving. A few directions can be
pursued to further advance the standardization efforts: (1) develop common data
models that capture the essential information and relationships within digital
twins, promote consistency, reusability, and integration across diverse ecosys-
tems; (2) establish interoperability frameworks that define common interfaces,
protocols, and integration patterns, this can facilitate communication and collab-
oration between different systems; (3) foster semantic alignment by developing
standardized ontologies and semantic models for effective communication and
understanding of concepts, relationships, and context; (4) develop security and
privacy standards to enable authentication, access control, data encryption, and
secure communication protocols that support the confidentiality, integrity, and
privacy of data so that trust and confidence in digital twins can be enhanced;
(5) develop frameworks and guidelines for managing the entire lifecycle of digital
twins to promote consistency, traceability, and scalability of digital twins; and
(6) establish standardized testing and validation procedures for digital twins to
ensure their reliability, accuracy, and performance, and enhance their credibil-
ity and trustworthiness. These procedures should cover data quality assessment,
model validation, conformance testing, and performance evaluation.
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5 Organizational view: the role of data (Bassam Zarkout)

Data utilized and generated by digital twins should be regarded as integral parts
of enterprise data assets. Organizations are increasingly keen on exploring the
value inherent in their data assets and how this value can be harnessed to support
corporate objectives. It is crucial to discern between intangible and tangible
data value. While both types contribute to organizational values like intellectual
property and operational efficiency, tangible data can also be readily monetized
[14, 32]. Data can be assessed for its present or future value, with the latter
being unlockable through analytics and Artificial Intelligence (AI). The advent
of increasingly potent AI tools, such as ChatGPT and other LLMs, capable of
extracting future value from seemingly inert data, is compelling organizations
to reassess their assumptions and strategies regarding data utilization beyond
immediate operational needs. It embodies the classic case of “you do not know
what you do not know.”

An integral aspect of discussions regarding data value, including that of digi-
tal twin data, is the management of its lifecycle. Besides the operational lifecycle,
other tracks may include the lifecycle of the physical asset being twinned, the
lifecycle of business value (as discussed earlier), and the compliance lifecycle as
dictated by regulations, laws, insurance, etc.

These discussions inevitably translate into additional functional and architec-
tural requirements crucial for digital twin development, such as interoperability,
scalability, and performance.

The methodologies and best practices for implementing digital twins need
not be developed in isolation. Organizations already possess established method-
ologies and best practices for IT-based business systems, extensively employed
across sectors like government, military, banking, insurance, telecommunications,
healthcare, manufacturing (on the business side), and various others. Adapting
these methodologies and best practices to accommodate the unique characteris-
tics of digital twins is imperative.

One notable trend is the increasing implementation of digital twins with
advanced analytics and AI components. The distinctive characteristics of AI
impose additional demands on how digital twins handle data, including response
time, latency, security, temporal data correlation, orchestration, and reusability.
Therefore, the methodologies and best practices adopted for digital twins must
address these supplementary considerations related to AI data (e.g., training
and operational datasets).

Continuing along this evolutionary trajectory, digital twins will increasingly
be integrated within the broader concept of a system of systems, introducing
unique characteristics such as operational and managerial independence of indi-
vidual systems, emergent behavior of geographically dispersed components, and
the evolutionary development of the overall system and its subsystems.
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6 Discussion

We now synthesize key takeaways from the panelists’ positions. First, we con-
textualize the panelists’ insights by relating them to the Levels of Conceptual
Interoperability Model (LCIM) by Wang et al. [49], highlighting motivations
for reaching high levels of interoperability and discussing potential enablers to
achieve this (Sec. 6.1). Then, we distill the main challenges (Sec. 6.2) and suc-
cess factors of digital twin interoperability (Sec. 6.3), and identify directions for
prospective researchers (Sec. 6.4).

6.1 Towards higher level of interoperability

The overarching theme of the panel discussion was the meeting of ambitions
and opportunities to achieve higher levels of interoperability in modern systems
subject to digital twinning. It seems that there is a clear need for more
advanced interoperability in digital twins. This need, coupled with the
fact that current digital twins exhibit relatively simplistic interoperability mech-
anisms, should draw the attention of prospective researchers to this topic.

Levels of interoperability. The Levels of Conceptual Interoperability Model
framework (LCIM) [49] defines seven interoperability levels. At the first level,
L0, there is no interoperability between systems. At the L1 (Technical) level,
systems have technical links through which they can exchange data, restricted
to the low level of bits and bytes. At the L2 (Syntactic) level, systems have an
agreed protocol to exchange data in the proper form, but there is no semantics
to the data, i.e., the “meaning” of data is not established. At the L3 (Semantic)
level, systems exchange a set of terms that they can semantically interpret.

Ferko et al. [22] report that current digital twins are restricted to these latter
two levels, L2 and L3, and digital twinning scenarios typically do not show
ambitions to reach higher levels. In contrast, emerging evidence from this panel
suggests that there is indeed motivation to reach higher levels of interoperability,
and that there are methods to achieve this. These higher levels are covered in
the LCIM as follows. At the L4 (Pragmatic) level, systems are aware of their
context, such as system states and processes, as well as the meaning of the
information they exchange. At the L5 (Dynamic) level, systems are able to
influence the production and consumption of data, based on the analysis they
need to carry out, triggered by changes in the context over time. Finally, at the
L6 (Conceptual), systems are fully aware of each other’s information, context,
and modeling assumptions, resulting in coherent, collective reasoning faculties.

In the following, we discuss three important transitions in interoperability
levels, summarized in Tab. 1.

From L3 (Semantic) to L4 (Pragmatic) interoperability. As Dawn Tilbury
puts it forward in her strategic perspective on digital twin multiplicities (Sec. 2),
“In the future, the digital twins for the machines and robots may be supplied by
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Table 1. Motivations and enablers of interoperability transitions in twinned systems

Transition Motivation Enablers

L3→L4 Deployment of vendor-supplied DTs
into a system of DTs (Sec. 2)

Co-simulation (Sec. 3)

L4→L5 Maintenance needs of DTs, reuse of
previously developed DTs (Sec. 2)

Digital twin evolution [13],
technical sustainability [16]

L5→L6 AI-driven advanced analytics in sys-
tems of DTs (Sec. 5)

Validity frames [37, 48],
ontologies [11]

their vendors, and trained on historical data for these particular machines oper-
ating in different contexts. In this case, the context or environmental parameters
must either be measurable by the digital twin or specified by the integrator.” The
deployment of such vendor-supplied digital twins into an organization’s existing
system of digital twins requires sound alignment of digital twins. Digital twins
need to be able to exchange metadata that enriches data and promotes it to
information; business and technical workflows need to be put in place to orches-
trate or coordinate digital twins; and contextual information of the deployed
environment must be taken into account. These requirements are the same as
the requirements of the L4 level of pragmatic interoperability in the LCIM.

Apart from these requirements, the key enabler to achieve the L4 level, ac-
cording to the LCIM [49, Table 1], is simulation implementation. As highlighted
by Claudio Gomes in his technical perspective (Sec. 3), co-simulation offers ma-
ture solutions here. For example, models can be transferred as FMUs, providing
semantic information between digital twins in a compact fashion.

From L4 (Pragmatic) to L5 (Dynamic) interoperability. The strategic
perspective motivates further improvements in interoperability. “Once a digital
twin has been successfully verified and deployed, it needs to be maintained and
potentially updated (especially if the context changes). Ideally, the successful dig-
ital twin can be used as a template to create digital twins for similar processes,
or in similar contexts.” Indeed, as digital twinning is a costly and resource-
intensive endeavor, it is expected that developed and deployed solutions exhibit
elevated technical sustainability, i.e., the ability to preserve their function over a
prolonged time [26]. This is especially true in open-ended and reactive systems,
such as digital ecosystems, that are typically driven by digital twins [16]. The
L5 level of interoperability requires the ability to react to contextual changes,
specifically in terms of data collection and processing.

Digital twin evolution methods [13], e.g., through automation by reinforce-
ment learning [12] offer high potential. However, digital twin evolution is an
emerging field still in its infancy, limiting the possibility of reaching higher levels
of interoperability.
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From L5 (Dynamic) to L6 (Conceptual) interoperability. As explained
by Bassam Zarkout in his organizational and data perspective, “One trend worth
noting is that more and more digital twins will be implemented with advanced
analytics and AI components.” Sound conclusions require congruent context and
model assumptions, which are foundational assumptions in traditional modeling
and simulation [3]. In AI, however, it is not trivial to assess the congruence of
models that have been trained on large volumes of data and are typically black
boxes for the human eye. At the L6 level of interoperability, systems are required
to understand each other’s information, context, and modeling assumptions. As
such, AI-driven systems of digital twins require L6 level interoperability.

The LCIM is vague about the potential solutions and simply requires a doc-
umented conceptual model to achieve the L6 level [49, Table 1]. Better-suited
techniques are offered by model-driven and model-based engineering. Validity
frames—structured and formal descriptions of contextual information under
which the soundness of analyses can be guaranteed—have been a topic of in-
terest for decades in the simulation community [51]. Recent developments in
semantic validity [37, 48], position validity frames as potential enablers of coor-
dinated AI systems that drive digital twins at the L6 level of interoperability.
Additionally, ontological techniques can be used to take steps towards explaining
AI [11], allowing for a better representation of AI model assumptions.

Cross-cutting concerns. There are two concerns in our scope that arch through
the L3 -L4 -L5 -L6 trajectory of transitions and support each step.

First, standardization, as explained by Gordon Shao (Sec. 4), can accel-
erate improvements in interoperability by providing common frameworks for
all involved parties. For example, the commonly used ISO 23247 Digital Twin
Framework for Manufacturing defines a dedicated functional entity in support
of interoperability: “the Interoperability Support FE enables integration between
digital twins and other systems such as Enterprise Resource Planning and Prod-
uct Lifecycle Management systems”.

Second, data valuation, as explained by Bassam Zarkout (Sec. 5), is becoming
an increasingly more pronounced interest of organizations. “Organizations are
increasingly interested in exploring the value of their data assets and how this
value can be leveraged to support the corporate objectives of the organization.”
Infonomics, the discipline of asserting economic value to information [32], is a
prime candidate to support organizations in connecting data value to corporate
objectives. Assessing the economic value of information helps organizations treat
information as a financial asset and leverage value management techniques com-
panies are familiar with. Infonomics has been a success in driving corporate data
strategies, and thanks to its recent adoption for digital twins [14], it is ready to
be used in support of improving the interoperability of digital twins.

6.2 Challenges

Complexity seems to be an overarching concern among viewpoints. Indeed, the
vast and elaborate functionality of digital twins and the hierarchical structure
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of SoDTs are pushing the boundaries of the state-of-the-art and have effectively
rendered prevalent systems engineering methods unsustainable [15]. This com-
plexity challenges establishing reliable and stable interoperability among digital
twins. The multiplicities of digital twins in modern SoDTs help deal with increas-
ingly more elaborate physical twins. However, this comes at the cost of increased
operational independence and often, geographic distribution of SoDTs. In such
settings, traditional enterprise architecture models might face limitations and
need to be adapted to accommodate the particularities of digital twins [5].

One such particularity is data and its management. There are substantial
challenges to seamlessly integrating diverse functional subsystems in which data
typically do not follow a common format. Interoperability is substantially hin-
dered by these challenges as no common data representation might be assumed.
This is especially concerning in real-time data processing typical in digital twins.
The unique characteristics of AI—such as (1) the need for voluminous data of
the numeric type, (2) the need for labeled data for supervised learning, and (3)
the recency and relevance of data—further exacerbate these concerns and place
additional demands on how the digital twin must deal with data.

The much-needed interplay between different suppliers along the supply
chain poses additional challenges to interoperability. IP protection bears elevated
importance for companies, and techniques that might work in traditional sys-
tems engineering settings, such as exchangeable black box models, are often not
considered strong enough and resistant to special forms of cryptographic attacks
and system identification. This is due to the ability to freely interact with a
black box to a sufficient extent allowing it to extract its underlying structure.
These threats hinder interoperability to an extent that is particularly challeng-
ing to overcome. Soon, digital twins may be supplied by hardware and machine
vendors with models pre-trained on historical data of the particular machine.
This raises the need for adaptability of digital twin models and integration with
other digital twins within companies. Currently, no development methods and
tools exist to support the integrator or adopter organization in these tasks.

Standards seem to be crucial in overcoming these challenges. However, there
are fewer standards developed for digital twins thus far. SoDTs, distributed, and
high-availability digital twins pose a particular challenge to current technical
standards such as FMI/FMU. The lack of standards is due to the complex and
time-consuming nature of their development. These endeavors require exten-
sive collaboration and consensus-building among government bodies, industry
experts, and academic researchers.

6.3 Success factors

On the flip side of data management challenges, the exponential increase of
available data in digital twins creates opportunities [10, 47]. Companies that
are able to tame data-related challenges can leverage a central data infrastruc-
ture to drive the interoperability of digital twins. For example, well-managed
data lakes with stable APIs can serve as the information glue between digital
twins [45].
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Standardization plays a critical role in achieving interoperability by defin-
ing common rules and specifications. While being part of standardization efforts
might be beyond the reach of the majority of companies, adopting standards cre-
ates an immense competitive edge. For example, standardized interfaces, such as
those defined by the FMI standard enable an array of benefits, e.g., the uniform
exchange of models, reuse of simulation units, and black-box simulator support
along the supply chain. Adopting standardized digital twin architectures [44]
further aids establishing interoperability.

Among the organizational success factors of digital twin interoperability,
two big groups emerge: the ability to leverage existing know-how, and staffing
with the right mindset. Leveraging organizational best practices and existing
IT systems can be achieved by properly adapting them to digital twins. On
a related note, existing standards (e.g., for data collection, data security, and
simulation) can help avoid fragmentation and duplication of efforts. The proper
usage of standards allows for important technical success factors, such as defer-
ring security control to companies, e.g., through on-prem simulators governed by
traditional IT security rules. All this requires recruiting the right subject-matter
experts who are also able to utilize the benefits of digital twins and aid their
evolution while ensuring proper interoperability principles [46].

6.4 Future research directions

Digital twin interoperability frameworks and lifecycle models have emerged
as the most important research direction for the near future. This primarily
includes interoperability frameworks that define common interfaces, protocols,
and integration patterns for digital twins. To this end, semantic techniques seem
particularly promising, e.g., semantic alignment by developing standardized on-
tologies and semantic models. End-to-end digital twin lifecycle models are also
crucial in understanding and controlling the proper interoperability in SoDTs.
This also includes data lifecycle models and common data models that capture
the essential information and relationships within digital twins.

As we build increasingly more complex SoDTs, their testing and validation
might need more standardization, especially with a focus on enhancing the cred-
ibility and trustworthiness of single digital twins—two crucial prerequisites of
interoperability. On a related note, traditional certification methods have to
evolve to deal with the uncertainty that stems from the often ambiguous scope
of the digital twin’s responsibility at the time of deployment. The challenge here
is analogous to the certification of systems that contain AI components.

Ensuring security and privacy in digital twins subject to interoperable
behavior is currently in the early stages of research, leaving substantial room for
improvement both in research and application communities. In a broader con-
text, ensuring the eight “ility”s of modularity, re-usability, interoperability,
interchangeability, V&V capability, maintainability, extensibility, and sustain-
ability have plenty of research potential, for example, supporting them through
AI and Machine Learning based digital twin engineering techniques [17],
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supporting technical sustainability by systematic digital twin evolutionmech-
anisms [13], and defining libraries of digital twin building blocks in support
of modularity and re-usability [29].

7 Conclusion

The complexity of systems subject to digital twinning often necessitates the de-
velopment of subject matter specific digital twins and subsequently organizing
them into a system of digital twins, in which interoperability is a key enabling
mechanism. Such scenarios regularly emerge in companies that exhibit siloed
forms and strict organizational boundaries: digital twins developed within single
siloes must be able to cooperate as well. As a consequence, digital twin interop-
erability is of a particular interest among academic scholars, industry experts,
and standardization bodies.

By approaching digital twin interoperability from four different, complemen-
tary viewpoints—strategic, technical, standardization, and organizational—we
drew key takeaways regarding the challenges, success factors, and future research
directions in interoperability of digital twins. The main takeaway of the panel is
that contrary to the state of affairs in digital twinning that limits interoperabil-
ity to low levels, there is a clear need to reach higher levels of interoperability
in digital twinning scenarios that necessitate a distributed approach. Moreover,
there are emerging solutions to achieve these higher levels—three of which have
been discussed here (co-simulation, standardization, infonomics).

Our report contributes to a growing body of knowledge on digital twins,
and aims to support academists in steering their research, and practitioners and
decision-makers in assessing the potential of digital twins in their organizations.
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Wäger, P.A.: The relevance of information and communication tech-
nologies for environmental sustainability – a prospective simulation
study. Environmental Modelling & Software 21(11), 1618–1629 (2006),
https://doi.org/https://doi.org/10.1016/j.envsoft.2006.05.007

27. Human, C., Basson, A., Kruger, K.: A design framework for a system
of digital twins and services. Computers in Industry 144, 103796 (2023),
https://doi.org/https://doi.org/10.1016/j.compind.2022.103796

28. Junghanns, A., et al.: The Functional Mock-up Interface 3.0 - New Features
Enabling New Applications. In: Proceedings of the 14th International Modelica
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