
074 0 -74 5 9 / 2 2 © 2 0 2 2 I E E E MAY/JUNE 2022 | IEEE SOFTWARE 31

FOCUS: FACETS OF TRUST

// Several mobile apps

have been released to

the public in response to

the COVID-19 pandemic.

The majority of these

apps are developed

under a tight schedule,

with immense social

and political pressure.

This pressure can lead

to malfunctions with

serious consequences. //

THE COVID-19 PANDEMIC is be-
ing fought with a wide variety of mea-
sures,1 including health measures (e.g.,
disinfection and vaccination) and social
measures (e.g., lockdowns and quar-
antines), in addition to technological
measures. In the latter category, sev-
eral mobile applications have been
released to the public in response to
the COVID-19 pandemic. Apps be-
longing to this category (referred to as
COVID-19 apps) include contact-trac-
ing apps (CTAs); apps to inform people
about facts, treatments, and procedures
related to the pandemic; apps support-
ing the COVID-19 response, contain-
ment, or research, efforts; and apps
providing additional services to re-
spond to COVID-19.2

The development of COVID-19
apps is hindered by various chal-
lenges. “Other Research Studies on
COVID-19 Apps” provides additional
information. Key concerns are the
trust and the wide adoption of these
apps. For example, CTAs are only
useful if they are widely adopted: to
get a relevant overview of the spread-
ing of COVID, enough people must
install tracing apps on their mobile

Engineering
Mobile Apps
for Disaster
Management:
The Case of
COVID-19 Apps
in the Google
Play Store
Ivano Malavolta , Vrije Universiteit

Taher A. Ghaleb , University of Ottawa

Istvan David , Université de Montréal and Vrije Universiteit

Jasper van Rooijen, U niversity of Twente

Marielle Stoelinga, U niversity of Twente and Radboud University

Digital Object Identifier 10.1109/MS.2021.3129978
Date of current version: 18 April 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

32	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

phones. In particular, the correct
functioning of the apps is critical:
identifying too few COVID-19 con-
tacts, or erroneous contacts would
defeat the whole purpose of the app.
Furthermore, security and privacy are
major challenges in COVID-19 apps,
as they record very privacy-sensitive
medical information as well as loca-
tion data.3 These challenges, in turn,
threaten the adoption of COVID-19
apps, and thereby their effectiveness.

Finally, the urgency of the pandemic
requires immediate solutions, which
lead to time pressure that can affect
the overall technical quality.

In this article, we provide 1) an
overview of the differences among
COVID-19 apps and non-COVID-19
apps on the Android platform in
terms of their platform compatibil-
ity, requested privacy-related permis-
sions, used software components, and
presence of bugs/code smells; and 2)

two main concerns and six useful sug-
gestions for app developers working
on projects facing similar challenges
to those of COVID-19 apps, i.e.,
a tight schedule, immense social and
political pressure, and with poten-
tially severe consequences in case of
malfunctions (e.g., apps responding
to natural disasters).

In this study, we focus on Android
apps since, as of today, Android cov-
ers 72.83% of the market share. In

OTHER RESEARCH STUDIES
ON COVID-19 APPS

The prominence of CTAs gave rise to a novel class of chal-
lenges. A substantial amount of work has been dedicated
to mapping these challenges from technological, societal,
and political standpoints.

Rahman and FarhanaS1 identify the user interfaces and
the data management layers of apps as the main hotspots
of technical issues. Bug reports related to these compo-
nents accounted for more than 60% of the bugs in their
assessment of 129 COVID-19 CTAs. In general, the main
nonfunctional concerns for CTAs have been security and
privacy.S2–S5 Additionally, more general characteristics
have been discussed by Samhi et al.S6

Much research has been done on the econopolitical
context of CTAs. Bano et al.S7 demonstrate that, despite
the sound technological underpinnings and the employ-
ment of the best practices of software engineering,
political factors and individual behavior patterns often
prevent the success of CTAs. Wang et al. point out that
technical and societal issues equally prevail in govern-
ment-backed applications as well.S8 Blasimme and Vay-
enaS9 suggest that adaptive governance models enabling
social learning can alleviate these issues and foster the
usage of CTAs.

References
	 S1.	 A. Rahman and E. Farhana, “An exploratory characterization of

bugs in COVID-19 software projects,” 2020, arXiv:2006.00586.

	 S2.	 M. Hatamian, S. Wairimu, N. Momen, and L. Fritsch, “A privacy

and security analysis of early-deployed COVID-19 contact tracing

Android apps,” Empirical Softw. Eng., vol. 26, no. 3, pp. 1–51,

2021, doi: 10.1007/s10664-020-09934-4.

	 S3.	 R. Sun, W. Wang, M. Xue, G. Tyson, S. Camtepe, and D. Ranas-

inghe, “Vetting security and privacy of global COVID-19 contact

tracing applications,” 2020, arXiv:2006.10933.

	 S4.	 R. Raskar et al., “Apps gone rogue: Maintaining personal privacy

in an epidemic,” 2020, arXiv:2003.08567.

	 S5.	 H. Cho, D. Ippolito, and Y. W. Yu, “Contact tracing mobile apps

for COVID-19: Privacy considerations and related trade-offs,”

2020, arXiv:2003.11511.

	 S6.	 J. Samhi, K. Allix, T. F. Bissyandé, and J. Klein, ” “A first look at

Android applications in Google Play related to COVID-19,” Empiri-

cal Softw. Eng., vol. 26, no. 4, pp. 1–49, 2021, doi: 10.1007/

s10664-021-09943-x.

	 S7.	 M. Bano, D. Zowghi, and C. Arora, “Requirements, politics, or

individualism: What drives the success of COVID-19 contact-

tracing apps?” IEEE Softw., vol. 38, no. 1, pp. 7–12, 2020, doi:

10.1109/MS.2020.3029311.

	 S8.	 H. Wang, L. Wang, and H. Wang, “Market-level analysis of

government-backed COVID-19 contact tracing apps,” in Proc.

Int. Conf. Automated Softw. Eng. – Workshops, 2020, pp. 79–84,

doi: 10.1145/3417113.3422186.

	 S9.	 A. Blasimme and E. Vayena, “What’s next for COVID apps?

Governance and oversight,” Science, vol. 370, no. 6518, pp.

760–762, 2020, doi: 10.1126/science.abd9006.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

	 MAY/JUNE 2022 | IEEE SOFTWARE � 33

addition, the availability of open
source tools for analyzing Android
apps and the ease in which apps
can be mined from the Google Play
Store make the whole study repli-
cable and independently verifiable.
Our analysis reveals two main con-
cerns that app developers should
address when developing disaster-
management apps and six sugges-
tions for app development.

•	 Concern A: Facilitate user on-
boarding in the context of disas-
ter situations.

°	 Suggestion A1: Keep the
required minimum software
development kit (SDK) version
low, to include as many users
as possible, even those with
older devices.

°	 Suggestion A2: Keep the set
of requested permissions as
tight as possible to avoid any
suspicion of privacy concerns
and lower the barrier for users
to install the app.

°	 Suggestion A3: Clearly declare
the permissions required and data
collected by the app to be fully
transparent with both prospective
and already onboarded users.

•	 Concern B: Retain users in the
context of disaster situations.

°	 Suggestion B1: Allow dis-
abling/enabling of privacy-
related permissions from
the app itself, rather than at
system level, to ease privacy
management for users.

°	 Suggestion B2: Comply with
guidelines and norms about
component structure to 1)
avoid user disengagement due
to the lack of trust and 2)
minimize the entry barriers
for newly joining developers.

°	 Suggestion B3: Increase the
frequency of releases to deliver

bug fixes with high priority
and urgency to maintain the
trust of users.

These results are gained by a
thorough comparison of 61 publicly
available COVID-19 apps, and 61 tra-
ditional (non-COVID-19) apps from
the health and medical domains. We
analyze each app with respect to four
key characteristics:

•	 Reach: the platform compatibil-
ity of the apps

•	 Privacy: the number, type, and
protection level of the requested
user permissions

•	 Software components: the number
and type of software components

•	 Software quality: bugs, code
smells, and code duplication.

Experimental Setup
We built on an open source tool (https://
github.com/networkinstitutevu /
covid-apps-observer) that automati-
cally collected Android mobile apps
that are made available to the public of
19 countries. For each country, the tool
queried the Google Play Store to search
for all mobile apps that had the key-
word “covid” and collected all mobile
apps appearing in the search results of
each country. We note that the Google
Play Store enforces strict requirements
on the apps claiming to be responding
to COVID-192 and filters its search re-
sults accordingly. The search strategy
of our tool made sure that only offi-
cially verified COVID-19 apps are an-
alyzed in this study, i.e., apps that are
1) either published, commissioned, or
directly endorsed by an official govern-
ment entity or 2) successfully passing
a thorough review process performed
by the maintainers of the Google
Play Store (https://support.google.
com/googleplay/android-developer/
answer/9889712?hl=en).

Our search strategy resulted in a
total of 61 COVID-19 mobile apps
across 19 countries. After that, we
collected non-COVID-19 health/med-
ical mobile apps to perform a com-
parative analysis with the COVID-19
apps. We chose medical/health apps
to carry out a reasonably fair com-
parison. Indeed, in the Google Play
Store, medical/health apps belong to
those categories that are the closest to
COVID-19, reasonably isolating the
effect that COVID-19 could have on
their development process. Specifically,
for each COVID-19 app, we collected
an app that is 1) under the “Medical”
or “Health and Fitness” app category
and 2) available in the same country
or countries. As a result, we obtained
61 non-COVID-19 mobile apps. An
analysis for each of the COVID-19 and
non-COVID-19 apps was carried out
in the following steps:

1.	We extracted the metadata of
the apps (e.g., title, description,
size, and date of release) using a
Google Play scraper.

2.	We downloaded the Android
Package (APK) of each app.

3.	We extracted information on
four key characteristics with the
following tools:
a)	Reach: We extracted the An-

droidManifest.xml file of the
apps to identify the Android
version(s) the apps support.

b)	Privacy: We extracted the
user permissions requested
by the apps using Andro-
guard (https://github.com/
androguard).

c)	Software components: We ex-
tracted the main components
of the apps, i.e., activities,
services, broadcast receivers,
and content providers using
Androwarn (https://github
.com/maaaaz/androwarn).

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

d) Software quality: We ex-
tracted quality metrics of
the software within the apps
using SonarQube (https://
github.com/SonarSource/
sonarqube).

 4. We explored and analyzed the
results via a combination of de-
scriptive statistics, bar plots, and
boxplots.

For independent replication and
verification, the raw data collected
for this study and the source code
used to analyze it are publicly avail-
able on a dedicated GitHub repository
(https://github.com/S2-group/covid
-apps-analysis).

Ch a racteristic 1: Reach

Mot ivation
And roid developers have to explic-
itly declare the specific versions of
the Android platform used by their
apps so that 1) the Google Play Store
can show to users only the apps that
are compatible with their devices
and 2) only compatible apps can be
installed on the device of the user.
Doing so prevents runtime issues due
to the mismatch between the system
calls made by the app and the run-
ning operating system, depending on
the features an app provides.

As of November 2020, there is still
a nonnegligible portion of the Android
user base who is running old versions
of Android, such as Android Lollipop
(6.1%, released in 2014) and Android
KitKat (2.5%, released in 2013).
Given their social and safety function,
it is fundamental that disaster-man-
agement apps are compatible with as
many as Android smartphones.

Ana lysis Method
We targeted the Android Manifest
file and extracted the contents of the

Android SDK versions used by each
app. Specifically, developers spec-
ify the Android version by means
of an API level integer that maps
one-to-one to a specific version of the
Android operating system (OS) and
ranges from 1 (corresponding to the
first release of Android) to 30 (cor-
responding to Android 11). We ex-
tracted the following three relevant
SDK versions declared in each app:

• Min imum Android SDK ver-
sion: the minimum API Level
required for the app to run. A
smartphone prevents the instal-
lation of apps with a mini-
mum SDK version higher than
the Android version running
onboard.

• Max imum Android SDK ver-
sion: the opposite behavior of
the minimum Android SDK
version.

• Tar get Android SDK version:
the API level that the developer
used to test the app. If the smart-
phone of the user is running a
different version of Android,
then such differences are com-
pensated at runtime by the OS.

The larger the difference be-
tween the minimum and maximum
Android SDK versions of an app,
the wider the audience the app can
reach. For example, old phones sup-
port only lower Android versions
(e.g., SDK version 15). Hen ce, an
app with a higher minimum sup-
ported Android version cannot be
used by users with such old phones,
which leads to accessibility prob-
lems. Android guidelines suggest
having the target Android SDK ver-
sion as high as possible to ensure
that apps behave and look as good
as possible on the most recent An-
droid devices.

Res ults of the Analysis
Fir st of all, it is interesting to ob-
serve that none of the COVID-19
apps define the maximum Android
SDK version. This finding is prom-
ising, since those apps will be com-
patible with all future releases of the
Android platform.

How ever, the data looks different
when considering the minimum Android
SDK version. As shown in Figure 1(a),
the median value for non-COVID-19
apps is 19 (Android 4.4, released in
2013), whereas the median value for
COVID-19 apps is 21 (Android 5.0,
released in 2014).

Alt hough COVID-19 apps are
compatible with more Android de-
vices, more than half of the apps are
compatible only with Android ver-
sions released from 2014. In general,
for Android developers, a higher
minimum Android SDK version
means having fewer issues at runtime
and fewer corner cases to manage at
development time.

The situation about the target An-
droid SDK version looks much bet-
ter [see Figure 1(b)], since COVID-19
apps have been tested with the latest
Android releases (SDK version 28 and
29). This result is not surprising, since
the need for developing COVID-19
apps only arose at the beginning of the
pandemic (February–March 2020),
where Android 10 was already released
(SDK version 29).

Sug gestions for Developers
The results about the maximum
and target SDK versions are posi-
tive and do not raise any warning.
However, the data about the mini-
mum SDK version is, in our opin-
ion, worrisome. Given that half of
COVID-19 apps have a minimum
target SDK version equal to Android
5.0 and that the number of users
having an Android version earlier

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2022 | IEEE SOFTWARE 35

FIGURE 1. The relevant characteristics o f C O V I D - 1 9 and non-COVID-19 apps: (a) minimum SDK versions; (b) target SDK versions;

(Continued)

COVID

M
in

im
um

 A
nd

ro
id

 S
D

K
 V

er
si

on

Android Versions

0
1 1

2

3

4

5

6

7

8

10

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Non-COVID

COVID

Ta
rg

et
 A

nd
ro

id
 S

D
K

 V
er

si
on

Android Versions

0
1 1

2

3

4

5

6

7

8

10

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Non-COVID

(a)

(b)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

36 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

FIGURE 1. (Continued) (c) permissions requested per app; (d) top ten requested permissions; (e) apps per protection levels; (f) permissions

per app of each protection level; (Continued)

COVID

Apps

(c) (d)

N
um

be
r

of
 P

er
m

is
si

on
s

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

Non-COVID

0

Permission

10

20

30

40

50

60

70

80

90

100 COVID

Fr
eq

ue
nc

y
(%

 o
f A

pp
s)

Internet

Access_Network_State

Wake_Lock

Receive

Receive
_Boot_Completed

Read_Settin
gs

Foreground_Service

Bind_Get_Install_Referre
r_Service

Access_Fine_Location

Write
_External_Storage

Non-COVID

0

10

20

30

40

50

60

70

80

90

100

Fr
eq

ue
nc

y
(%

 o
f A

pp
s)

Protection Level

Norm
al

Dangerous

Undefined

Signature

Signature I (
Others)

Not fo
r T

hird-Party
 Apps

Deprecated

COVID
Non-COVID

0

10

5

15

20

25

N
um

be
r

of
 P

er
m

is
si

on
s

pe
r

A
pp

Protection Level(e) (f)

Norm
al

Dangerous

Undefined

Signature

Signature I (
Others)

Not fo
r T

hird-Party
 Apps

Deprecated

COVID
Non-COVID

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2022 | IEEE SOFTWARE 37

FIGURE 1. (Continued) (g) number of components per app; (h) number of broadcast receivers; (i) number of bugs per app; (j) number

of code smells per app; (k) number of vulnerabilities per app; and (l) percentage of duplicated code per app.

(g) (h)

(i) (j)

25

0

50

75

100

125

150

175

200

COVID

N
um

be
r o

f C
om

po
ne

nt
s

Non-COVID

0

2.5

5

7.5

10

12.5

15

17.5

COVID

N
um

be
r o

f B
ro

ad
ca

st
 R

ec
ei

ve
rs

Non-COVID

0

250

500

750

1,000

1,250

1,500

1,750

2,000

N
um

be
r o

f B
ug

s

COVID Non-COVID

0

10,000

20,000

30,000

40,000

50,000

N
um

be
r o

f C
od

e
Sm

el
ls

COVID Non-COVID

0

2

4

6

8

10

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

COVID(k) (l)Non-COVID

0

2.5

5

7.5

10

12.5

15

17.5

Pe
rc

en
ta

ge
 o

f D
up

lic
at

ed
 C

od
e

COVID Non-COVID

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

38	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

than Android 5.0 is 3.2% of the to-
tal number of Android users (about
2.8 billion), there are 89.6 million
users who cannot even install a
COVID-19 app today. Besides, there
are several apps whose minimum
Android SDK version is higher than
the API level of 21, whereas some
apps that require an API level of 26,
which corresponds to Android 8.0,
released only in 2017.

Based on these results, we suggest
Android developers strive toward ex-
panding the target user base of their
disaster-management apps by low-
ering their required minimum SDK
version to include those users hav-
ing older devices (Suggestion A1).
Android versions that are running
on older or secondhand devices are
more likely to be used by people with
low-income and the elders, which
are sadly the population segments
having higher rates of COVID-19 in-
fection and mortality.4

Characteristic 2: Privacy

Motivation
A disaster-management app may re-
quest users to permit the app to ac-
cess a certain functionality (e.g.,
Bluetooth) or personal data records
(e.g., call history) on their smart-
phones. While certain app functions
may not work properly if no permis-
sion is granted, prior research3 has
reported that COVID-19 apps (e.g.,
CTAs) tend to be overprivileged,5
i.e., apps requesting permissions that
are unrelated to the app functional-
ity. Yet, it is unclear whether this
phenomenon is common on officially
verified COVID-19 apps and ordi-
nary health and medical apps.

Analysis Method
We used the user permissions ex-
tracted from each app. We performed

a comparative ana ly s i s among
COVID-19 and non-COVID-19 apps
to investigate how different are the 1)
number of permissions requested by the
apps, 2) the most frequently requested
permissions, and 3) the permissions
that COVID-19 and non-COVID-19
apps do not have in common. We
performed a Mann-Whitney U test
to measure the difference in app
permissions among COVID-19 and
non-COVID-19 apps.

Results of the Analysis

App-Level
As shown in Figure 1(c), the num-
ber of permissions requested by CO-
VID-19 apps do not significantly
differ from the permissions requested
by non-COVID-19 apps (p value =
0.22 and a median of nine permis-
sions per app).

Permission-Level. Our permission-wise
analysis reveals that the frequency
of COVID-19 apps that request a
certain permission is not signifi-
cantly different from the frequency
of non-COVID-19 apps that request
that permission (p value = 0.43).
We identified a total of 87 unique
requested permissions. COVID-19
and non-COVID-19 apps request 54
(62%) permissions in common. Fig-
ure 1(d) shows a bar chart showing
the top 10 permissions requested by
COVID-19 apps along with the per-
centage of apps that request those
permissions. There, INTERNET,
ACCESS_ NETWORK_ STATE ,
WAKE_LOCK, and RECEIVE are
the top three commonly requested
permissions by both COVID-19 and
non-COVID-19 apps.

Protection-Level. Figure 1(e) shows the
most commonly used protection lev-
els. We observe that the majority of

COVID-19 and non-COVID-19 apps
request both normal (nonrisky) and
dangerous permissions, in addition to
permissions with undefined protection
level (according to the Android docu-
mentation). Moreover, we observe
that COVID-19 apps tend to request
fewer dangerous permissions than
non-COVID-19 apps [see Figure 1(f)].

We identified 13 permissions that
are only requested by six COVID-19
apps. We also identified 20 permissions
that are requested by non-COVID-19
apps, but not COVID-19 apps. We ana-
lyzed the permissions requested by CO-
VID-19 apps only to investigate their
protection levels. We found that the
majority of those permissions do not
require an explicit approval by users.
Here is a breakdown of the permissions
that only exist in COVID-19 apps:

•	 seven permissions are of a
normal protection level, i.e.,
minimal risk to other apps, the
system, or the user

•	 three permissions are of a
signature or system/signature
protection level, i.e., granted to
certificate apps

•	 two permissions are likely to be
written incorrectly

•	 one permission with undefined
protection level.

Suggestions for Developers
Users may not install an app if they
suspect any privacy concerns.6 Hence,
developers should keep the set of re-
quested permissions as tight as pos-
sible (Suggestion A2), specifically by
avoiding requesting 1) an extensive
number of app permissions, 2) per-
missions that are unrelated to the app
functionality, 3) permissions of high
privacy risks, or 4) permissions that
are uncommon in health/medical apps.

Moreover, users expect that disas-
ter-management apps collect nothing

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2022 | IEEE SOFTWARE 39

but physical proximity data,7 in addi-
tion to the basic services, such as ac-
cessing the Internet. Thus, an app is
expected to access the Bluetooth/WiFi/
GPS devices to be able to identify the
user’s location data. In addition, users
might not be aware of the “normal-
level” permissions that an app re-
quires, since such permissions are
granted by the system without user ac-
knowledgment. Therefore, to facilitate
users onboarding, developers of disas-
ter-management apps are encouraged
to clearly declare in the app descrip-
tion what permissions are required by
the app to function properly (Sugges-
tion A3). In this way, developers are
more transparent with users about the
permissions required by their disaster-
management apps and which data are
to be collected. Developers can do so
by explicitly highlighting such infor-
mation in the app description, i.e.,
available prior to app installation, or at
the welcome screen of the app.

 Finally, to retain already onboarded
users, developers should make it easy
for users to disable/enable a certain per-
mission from the app itself or provide
in-app links to allow users to navigate
directly to the permissions of the app in
the system settings (Suggestion B1).

 Characteristic 3:
Software Components

 Motivation
 The time pressure in developing di-
saster-management apps could affect
the structure of such apps. Android
apps are composed of four types of
components, namely activities, ser-
vices, broadcast receivers, and con-
tent providers. This information can
be extracted from the manifest of the
apps and may shed light on differ-
ences or the lack of thereof between
disaster-management apps and tradi-
tional apps.

 Analysis Method
 We analyzed the manifest data previ-
ously extracted using Androwarn. We
investigated the number of such compo-
nents in COVID-19 apps, and in a se-
lection of general, non-COVID-19 apps,
as a reference; and compared these
numbers to investigate any relevant

differences. Specifically, we performed
Mann-Whitney U tests between the
number of components of COVID-19
and non-COVID-19 apps to identify
any statistically significant differences.

 Results of the Analysis
 The Mann-Whitney U test between
the sum number of components in
COVID-19 and non-COVID-19 apps
yields a p value of 0.15, which suggests
that the null hypothesis of the test can-
not be rejected (at .),0 05a = i.e., there
i s no significant difference between CO-
VID-19 and non-COVID-19 apps in
their respective numbers of components.
We have found an average of 28.33
components in COVID-19 apps, and
30.65 components in non-COVID-19
apps. This difference is indeed not signif-
icant considering the variances in the
two groups. The box plot in Figure 1(g)
provides visual evidence to the indif-
ference between COVID-19 and
non-COVID-19 apps.

T he Mann-Whitney U test between
the specific four types of components,
however, revealed a significant difference
in the case of the broadcast receivers. As
shown in Figure 1(h), we observe that

the median number of broadcast receiv-
ers of COVID-19 apps is higher than
that of non-COVID-19 apps: 6.7 and
4.6, respectively. The Mann-Whitney U
test yields a p value of 0.0016, strong
evidence against the null hypothesis, i.e.,
there is a significant difference between
COVID-19 and non-COVID-19 apps.

S uggestions for Developers
W hile broadcast receivers serve the
purpose of integrating an app into the
larger ecosystem of apps, an abun-
dance of broadcast receivers can be a
pattern of malicious software.8 E x-
treme situations, such as a global pan-
demic, may motivate users to remain
flexible and introduce a tradeoff be-
tween the development time of the app
and its security and privacy preserving
mechanisms.9 Hence, we suggest de-
velopers of disaster-management apps
to comply with guidelines and norms
about component structure to 1) avoid
user disengagement due to the lack of
trust and 2) keep low the entry barri-
ers for newly joining developers, thus
managing the fluctuations of available
development effort (Suggestion B2).

C haracteristic 4:
Software Quality

M otivation
I t is of paramount importance for An-
droid developers to promptly identify
and fix possible bugs, code smells, and
vulnerabilities from the source code
to avoid crashes, data inconsistencies,

Android apps are composed of
four types of components, namely

activities, services, broadcast
receivers, and content providers.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

40	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

or even data loss.9 While achieving
high-quality software requires sev-
eral iterations and a deep reasoning
on various technical design decisions,
developers of disaster-management
apps will likely work under high
pressure by both policy makers and
society in general. For example, in
July 2020, Japan’s health authority
had to temporarily remove its offi-
cial COVID-19 app from app stores
due to a bug preventing infected us-
ers from entering critical information
to notify other users who had close
contact with them. In the following,
we investigate if working under such
high social pressure could impact the
software quality of COVID-19 apps.

Analysis Method
We measured the software quality
using SonarQube, a commonly used
static code analyzer. To run Sonar-
Qube, we decompiled all apps by using
dex2jar and JD-Core, two widely-
used off-the-shelf tools9 Finally, we
analyzed each app via the standard
Java quality profile of SonarQube,
which contains 625 rules, organized
into four groups: bugs, vulnerabilities,
code smells, and code duplication.

Results of the Analysis

Bugs. SonarQube supports 152 dif-
ferent types of bugs, ranging from
unclosed input–output resources,
classes compared by name, and so
on. With a median of 628 bugs per
app, COVID-19 apps have a higher
number of bugs than non-COVID-19
apps, which have a median of 382
bugs per app [see Figure 1(i)]. Spe-
cifically, the most recurrent bugs in
COVID-19 apps are: 1) ignoring the
initial values of method parameters,
caught exceptions, and foreach vari-
ables (8,155 occurrences), 2) deref-
erencing potentially null pointers

(7,286 occurrences), and 3) reassign-
ing variables to themselves (6,540
occurrences).

Code Smells. Although code smells do
not prevent apps from functioning,
they could negatively impact soft-
ware maintenance. As shown in Fig-
ure 1(j), the median number of code
smells in COVID-19 apps (14,735) is
higher than that of non-COVID-19
apps (9,222). The most recurrent
code smells in COVID-19 apps are:
1) not complying to naming conven-
tions (72,353 occurrences), 2) having
unused private fields (40,496 occur-
rences), and 3) declaring methods or
field with the same name or differ-
ent only by capitalization (38,494 oc-
currences). While higher numbers of
code smells are expected, since code
smells are not bugs, they would likely
make Android apps suffer from main-
tainability issues in the future, which
tends to grow over time.10

Vulnerabilities. Both COVID-19 and
non-COVID-19 apps have very few
vulnerabilities [Figure 1(k)]. This
result indicates that Android devel-
opers tend to pay attention to secu-
rity-related issues of their apps in the
e-health domain (both COVID-19
and non-COVID-19 apps).

Code Duplication
Finally, we analyze the percentage of
duplicated code within each app [Fig-
ure 1(l)]. Code duplication is slightly
higher in COVID-19 apps (median
= 3.96%) than in non-COVID-19
apps (median = 3.34%). Code dupli-
cation is a frequent phenomenon in
Android apps, mostly because of the
activity-intent-based Android program-
ming model.10 Nevertheless, a higher
percentage of duplicated code (as it is
happening in COVID-19 apps) might
lead to introducing more bugs and

overlooking inconsistencies,10 which
may negatively impact app maintain-
ability in the future.

Overall, we can observe that the
quality of COVID-19 apps tend to
be consistently lower than the qual-
ity of non-COVID-19 apps, espe-
cially for bugs and code smells. This
phenomenon can be explained by
the time pressure associated with the
development of COVID-19 apps. In-
deed, prior research has shown that
time pressure has a detrimental ef-
fect on code quality and that it leads
to workarounds or compromises and
minimal quality assurance.11

Suggestions for Developers
We suggest developers of disaster-man-
agement apps allocate sufficient time
for the next releases of their apps and
to pay careful attention to fixing exist-
ing bugs, since they can undermine the
trust that end users place in the apps
and, in turn, on their provided services
(Suggestion B3). Losing the trust of end
users may lead to a drop in the adop-
tion of disaster-management apps, thus
potentially jeopardizing the control of
the disaster. Possible solutions for im-
proving the overall quality of the apps
include allocating more time for ana-
lyzing the requirements specification
and documentation, routinely adopting
code reviews, unit testing, and inspect-
ing while taking into consideration the
feedback provided by user app reviews.

T his study is the first investi-
gation on professionals de-
veloping software under the

combination of the peculiar condi-
tions due to the COVID-19 pandemic,
such as working under a strong social
and political pressure. We formulate
the emerging concerns and sugges-
tions to make them generically appli-
cable to disaster-management apps,

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2022 | IEEE SOFTWARE 41

hoping to help professionals work-
ing under similar conditions, such as
those for responding to natural disas-
ters. It is important to note that the set
of concerns and suggestions emerging
from this study is not meant to be ex-
haustive, but rather as a complement
to already existing generic guidelines
for Android development, such as
those by Hatamian on privacy12 and
the ones by Verdecchia et al. on archi-
tecting Android apps.13 We hope that
our results will help professionals in
1) developing disaster-management
apps with a higher level of quality and
2) making better informed decisions
with respect to the ones made during
the COVID-19 pandemic.

Reference s
1. “Considerations for implementing

and adjusting public health and social

measures in the context of CO-

VID-19: Interim guidance,” World

Health Organization, Geneva, No.

WHO/2019-nCoV/Adjusting_PH_

measures/2021.1, Jun. 14, 2021.

2. “Requirements for coronavirus disease

2019 (COVID-19) apps.” Google Play

Store Support. https://support.google.

com/googleplay/android-developer/

answer/9889712 (accessed Jul. 22, 2021).

3. M. A. Azad et al., “A first look at pri-

vacy analysis of COVID-19 contact

tracing mobile applications,” IEEE

Internet Things J., vol. 8, no. 21, pp.

15,796–15,806, 2021, doi: 10.1109/

JIOT.2020.3024180.

4. C. I. A. Oronce, C. A. Scannell, I.

Kawachi, and Y. Tsugawa, “Asso-

ciation between state-level income

inequality and COVID-19 cases and

mortality in the USA,” J. General

Internal Med., vol. 35, no. 9, pp.

2791–2793, 2020, doi: 10.1007/

s11606-020-05971-3.

5. A. P. Felt, E. Chin, S. Hanna, D.

Song, and D. Wagner, “Android

permissions demystified,” in Proc.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

IVANO MALAVOLTA is an assistant professor in the

Department of Computer Science and director of the Network

Institute, Vrije Universiteit Amsterdam, Amsterdam, 1081HV,

The Netherlands. His research interests include data-driven

software engineering, with a special emphasis on software

architecture, mobile software development, and robotics soft-

ware. Malavolta received his Ph.D. in computer science from

the University of L’Aquila, Italy. He is a Member of IEEE, the

Association for Computing Machinery, VERSEN, Amsterdam

Young Academy, and Amsterdam Data Science. Contact him at

i.malavolta@vu.nl.

TAHER A. GHALEB is a postdoctoral research fellow

at the School of Electrical Engineering and Computer

Science, University of Ottawa, Ottawa, Ontario, K1N 6N5,

Canada. Some of his research interests include continu-

ous integration, software testing, and mining software

repositories. Ghaleb received his Ph.D. in computing from

Queen’s University, Canada. Contact him at taher.ghaleb@

queensu.ca.

ISTVAN DAVID is a postdoctoral researcher in the GEODES

Software Engineering Research Group of the University of

Montréal, Montréal, H3C 3J7, Canada. His research interests

include collaborative and multiview modeling, and process op-

timization. David received his Ph.D. in computer science from

the University of Antwerp, Belgium. Contact him at istvan.

david@umontreal.ca.

 JASPER VAN ROOIJEN is a recent computer science gradu-

ate in the Computer Science Department of the University

of Twente, Twente, 7522 NB, The Netherlands. His research

interests include program analysis and mobile apps analysis.

van Rooijen received his master’s degree in computer science

from the University of Twente. Contact him at j.vanrooijen@

student.utwente.nl.

MARIELLE STOELINGA is a full professor of risk analysis

for high-tech systems, both at the University of Twente and

Radboud University, 7522 NB, The Netherlands. Her research

interests include quantitative risk assessment, model-based

testing, and (stochastic) model checking. Stoelinga received

her Ph.D. in computer science from the University of Nijmegen.

Contact her at m.i.a.stoelinga@utwente.nl.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

42 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FACETS OF TRUST

18th ACM Conf. Comput. Commun.

Security, 2011, pp. 627–638, doi:

10.1145/2046707.2046779.

6. J. Gu, Y. C. Xu, H. Xu, C. Zhang,

and H. Ling, “Privacy concerns for

mobile app download: An elaboration

likelihood model perspective,” Decis.

Support Syst., vol. 94, pp. 19–28, Feb.

2017, doi: 10.1016/j.dss.2016.10.002.

7. M. Salathé and C. Cattuto, “CO-

VID-19 response: What data is neces-

sary for digital proximity tracing?”

GitHub, 2020. https://github.com/DP-

3T/documents (accessed Jul. 22, 2021).

8. F. Mohsen, H. Bisgin, Z. Scott, and

K. Strait, “Detecting Android mal-

wares by mining statically registered

broadcast receivers,” in Proc. 2017

IEEE 3rd Int. Conf. Collaboration

Internet Comput. (CIC), pp. 67–76,

doi: 10.1109/CIC.2017.00021.

9. W. Enck, D. Octeau, P. McDan-

iel, and S. Chaudhuri, “A study of

Android application security,” in

Proc. 20th USENIX Conf. Security

(SEC’11), 2011, pp. 1–3.

10. I. Malavolta, R. Verdecchia, B.

Filipovic, M. Bruntink, and P. Lago,

“How maintainability issues of an-

droid apps evolve,” in Proc. IEEE

Int. Conf. Softw. Maintenance

Evol. (ICSME), Madrid, Spain,

2018, pp. 334–344, doi: 10.1109/

ICSME.2018.00042.

11. M. Kuutila, M. Mäntylä, U.

Farooq, and M. Claes, “Time

pressure in software engineering:

A systematic review,” Inf. Softw.

Technol., vol. 121, p. 106,257,

May 2020, doi: 10.1016/j.infsof.

2020.106257.

12. M. Hatamian, “Engineering privacy

in smartphone apps: A technical

guideline catalog for app developers,”

IEEE Access, vol. 8, pp. 35,429–

35,445, Feb. 2020, doi: 10.1109/

ACCESS.2020.2974911.

13. R. Verdecchia, I. Malavolta, and

P. Lago, “Guidelines for architect-

ing android apps: A Mixed-method

empirical study,” in Proc. IEEE Int.

Conf. Softw. Architecture (ICSA),

2019, pp. 141–150, doi: 10.1109/

ICSA.2019.00023.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MS.2022.3162509

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2022 at 14:57:08 UTC from IEEE Xplore. Restrictions apply.

