
Model Consistency as a Heuristic for Eventual Correctness

Istvan David1,∗, Hans Vangheluwe2,3, Eugene Syriani1

1DIRO, Université de Montréal, Canada
2University of Antwerp, Belgium

3Flanders Make, Belgium

Abstract

Inconsistencies between stakeholders’ views pose a severe challenge in the engineering of complex systems.
The past decades have seen a vast number of sophisticated inconsistency management techniques being
developed. These techniques build on the common idea of “managing consistency instead of removing
inconsistency”, as put forward by Finkelstein. While it is clear what and how to do about inconsistencies,
it is less clear why inconsistency is particularly useful. After all, it is the correctness of the system that
should matter, as correctness is the end-user-facing quality of the product. In this paper, we analyze this
question by investigating the relationship between (in)consistency and (in)correctness. We formally prove
that, contrary to intuition, consistency does not imply correctness. However, consistency is still a good
heuristic for eventual correctness. We elaborate on the consequences of this assertion and provide pointers
as to how to make use of it in the next generation of inconsistency management techniques.

Keywords: consistency, correctness, heuristics, model consistency, model-based systems engineering,
multi-view modeling

1. Introduction

Properly managing inconsistencies—that is, sit-
uations when two or more statements can be made
that are not jointly satisfiable [77]—has been a
grand challenge in software and systems engineering
for decades. This challenge is vastly exacerbated in
the engineering of heterogeneous systems which re-
quires a coordinated interplay among stakeholders
of disparate domains. In such settings, the lack of
common vocabulary and modeling languages ren-
ders the detection of inconsistencies a particularly
challenging task. The inappropriate management of
inconsistencies, in turn, leads to incorrect products,
potentially resulting in costly and even catastrophic
results [57]. In this context, inconsistencies at any
point of the engineering process indicate potential
risks to the correctness, and great effort is invested
into their resolution. Typically, inconsistencies are
considered parts of the verification and validation

∗Corresponding author
Email address: istvan.david@umontreal.ca (Istvan

David)

(V&V) process of systems engineering [43]. The
extended time between the introduction of incon-
sistencies and V&V activities adversely affects the
cost factors of repairing inconsistencies.

As put forward by Finkelstein [28] over twenty
years ago: «Rather than thinking about removing
inconsistency we need to think about “managing
consistency”». Promoting inconsistency as a first-
class notion in distributed engineering settings facil-
itates explicit reasoning about the nature, causes,
and implications of inconsistency before deciding
how to treat them. This is contrary to simply re-
moving inconsistency as close to the source and as
soon as possible. There are obvious benefits to such
a mindset, as evidenced by the numerous techniques
of inconsistency tolerance, analysis, and the wide
array of holistic management techniques [4, 25, 82].

While the body of knowledge on inconsistency
management is clear about what and how to do
about inconsistencies, it is not entirely clear why
inconsistency is particularly useful. After all, what
matters is the correctness of the product to be de-
livered. It is correctness that has to be ensured, and
it is the lack of correctness that makes the end-user

Preprint submitted to Journal of Computer Languages July 7, 2023

question the quality of the product.
In this paper, we investigate the relationship be-

tween (in)consistency and (in)correctness and shed
light on why and how the notion of inconsistency
should be used to create more efficient engineer-
ing processes while still converging to an eventu-
ally correct product. We show that consistency
does not imply correctness, that is, consistent
models can still produce incorrect results. Rather,
consistency—for the better or worse—is a mere
heuristic to eventual correctness. We provide
formal proof of both of these assertions and dis-
cuss their implications. We conclude that over-
committing to retaining consistency in the hope to
ensure eventual correctness needlessly impairs the
performance of the underlying engineering process.
Our observations provide formal validation of the
above-quoted proposition by Finkelstein [28].

The rest of this paper is structured as follows.
In Section 2, we present the running example we
use throughout the paper for demonstration pur-
poses. In Section 3, we give a brief overview of
the background relevant to our work. In Section 4,
we formalize the concepts of correctness and consis-
tency in terms of ontological properties and prove
that consistency does not imply correctness. In Sec-
tion 5, we map the formal concepts of correctness
and consistency onto the definition of heuristics by
Romanycia and Pelletier [69] and show that con-
sistency is indeed a heuristic to eventual correct-
ness. In Section 6, we demonstrate the utility of
the framework through an industrial example. In
Section 7, we discuss some of the consequences and
results of our formal framework. Finally, in Sec-
tion 8, we draw the conclusions and identify poten-
tial future directions.

2. Running example

To illustrate our points throughout this paper,
we rely on the running example of an industrial
line follower robot.

Line follower robots [74] are autonomous vehi-
cles that move along a line, typically drawn on the
floor. Line follower robots are frequently used in
industry settings, especially in plants and produc-
tion facilities, to carry heavy or dangerous pay-
loads between two locations. In our example, the
robot has two movement modes: (i) move ahead
and (ii) change direction by rotating on omnidi-
rectional wheels. The engineers of the robot are

rotate_enabled

ahead_action

ctrlahead_enabled

rotate_action

r_starta_start

a_end r_end

(a) Petri Net

[0, 1, 0, 0, 1] [1, 0, 0, 1, 0]

[1, 0, 1, 0, 1]

a_start r_start

r_enda_end

default

moving_ahead rotating

(b) The reachability graph of the Petri Net

Figure 1: Petri net model of the robot and its reachability
graph as viewed by the safety engineers.

required to build a safe robot, which entails three
required properties.

Motion safety. The robot will typically carry large
amounts of payloads on it, with a high center
of gravity. Executing the two movement modes
simultaneously might render the payload un-
stable. Thus, the engineers must ensure that
the two movement modes are not executed si-
multaneously.

Mission safety. The robot alternates between the
two motion modes automatically, according to
the line it follows. If the robot gets stuck in one
motion mode, it may abandon the line, result-
ing in hazardous and costly situations. Thus,
the engineers must ensure that the robot can-
not get stuck in one motion mode.

Interface safety. Superfluous states in the robot’s
state space allow for later design phases to in-
troduce unwanted behavior and jeopardize the
integrity of the behavioral model of the robot.
Thus, the engineers must ensure that only the
required functionality is present in the models
of the robot.

Modeling and analysis. The engineers decide to use
Petri nets [67] to model the behavior of the robot
and check the three required properties. They

2

model the behavior of the robot as shown in Fig-
ure 1a. The ahead_enabled and rotate_enabled
states of the net denote the states of the robot in
which it can perform the ahead and rotate mov-
ing modes, respectively. The ahead_action and ro-
tate_action states denote the states of the robot in
which it moves ahead and rotates, respectively. The
ctrl state controls which action is performed by al-
lowing the firing of the a_start ("start ahead move-
ment") and r_start ("start rotate movement")
transitions. A marking of the Petri net is the dis-
tribution of its tokens in its states. The marking
is given by the vector in which the nth element de-
notes the number of tokens in nth state of the Petri
net. The initial marking in Figure 1a is [1, 0, 1, 0,
1], modeling the default configuration of the robot
in which both move modes are enabled (i.e., the
controller can activate any of them).

To be able to express the three required proper-
ties, the engineers construct the reachability graph
of the Petri net, as shown in Figure 1b. The reach-
ability graph of a Petri net is a directed graph
G = (V,E) in which each vertex v ∈ V repre-
sents a marking of the Petri net, and each edge
e ∈ E represents a transition between two mark-
ings [67]. The marking in vertex v is stored in a
vector [v1, v2...vn] with each element of the vector
corresponding to one particular place of the Petri
net and representing its current marking. For ex-
ample, in Figure 1b, the default state represents the
default marking of the Petri net in Figure 1a. Fir-
ing transition a_start brings the marking [1, 0, 1, 0,
1]—i.e., the default state of the robot—to marking
[0, 1, 0, 0, 1]—i.e., the moving_ahead state of the
robot. For convenience, we refer to the marking of
place i as the ith element of v and denote it as v[i].
For example, in Figure 1b, moving_ahead[2] = 1
and moving_ahead[4] = 0. This allows us to ex-
press properties about the state of the robot in an
algebraic way.

Following this formalization, the properties are
formulated as follows.

p1 – motion is safe. This property is expressed as
the inability to exhibit the ahead_action and
rotate_action states simultaneously. That is,
there must not exist any vertex in the reacha-
bility graph R that encodes a marking in which
the second and fourth places are both marked.
Formally, ∄v ∈ V (R) ∶ v[2] + v[4] > 1, where
V(R) denotes the set of vertices of reachability
graph R.

rotate_enabled

ahead_action

ctrlahead_enabled

rotate_action

r_starta_start

a_end r_end

(a) Petri Net

[0, 1, 0, 0, 0]

[1, 0, 1, 0, 0]

a_start r_start

r_enda_end

default

moving_ahead rotating

(b) The reachability graph of the Petri Net

Figure 2: Petri net model of the robot and its reachability
graph as viewed by the configuration engineer.

p2 – mission is safe This property is expressed by
the lack of deadlock in the Petri net. A Petri
net is deadlocking if it exhibits a state in which
no transitions can fire. The reachability graph
encodes such states as a vertex without an out-
going edge. Thus, the property is formally ex-
pressed as ∀vi ∈ V (R)∃vj ∈ V (R), vi ≠ vj ∶
(vi, vj) ∈ E(R), where V(R) and E(R) de-
note the set of vertices and edges of reachabil-
ity graph R, respectively; and (vi, vj) ∈ E(R)
denotes an edge between vertices vi and vj .

p3 – interface is safe. This property is expressed
by the lack of places in the Petri net that are
never marked. Such places can be identified by
checking whether there exists at least one state
in the reachability graph in which the place is
marked. If there is no such state, the place
is indeed never marked. Thus, the property is
formally expressed as ∀i ∈ N, 1 ≤ i ≤ ∣S(P)∣ ∶
∃v ∈ V (R) ∶ v[i] > 0, where S(P) denotes the
set of places of Petri net P and V(R) denotes
the set of vertices of reachability graph R.

Inconsistencies. The configuration engineer work-
ing in parallel with the safety engineers changes the
default configuration of the robot. In the new con-
figuration, only the ahead movement mode is en-
abled. The resulting Petri net and its reachability
graph are shown in Figure 2.

3

The new model does not satisfy p2 – as states
rotate_enabled and rotate_action can never be
marked; and p3 – as these states are superfluous in
the model. At this point, the model of the config-
uration engineer in Figure 2 and the model of the
safety engineers in Figure 1 are inconsistent with
each other with respect to properties p2 and p3.

In Sections 3-4 we elaborate on these inconsisten-
cies in detail.

3. Background and related work

In this section, we overview the background of
our work. We discuss the notion of inconsistency
are the typical techniques to manage its undesired
effects (Section 3.1). Then, we discuss the notion of
ontological property which is the basis of reasoning
about inconsistencies in our work (Section 3.2). Fi-
nally, we briefly overview model-driven engineering
(MDE), a domain particularly vulnerable to incon-
sistencies (Section 3.3).

3.1. Inconsistencies and their management

Inconsistency is a state in which elements of dif-
ferent models make assertions that are not jointly
satisfiable [77]. Manipulating models in multi-view
and multi-paradigm settings naturally causes incon-
sistencies in models due to the overlap between the
shared concerns of stakeholders, and the resulting
overlap between their views and models [66]. As one
view changes a shared element, the change has to be
propagated to the other views that share the same
element, otherwise, an inconsistency will occur [29].
These shared elements are not necessarily of syn-
tactic nature. Often, they can only be observed in
the semantic domain of the union of models as the
ontological properties of the system—especially in
multi-domain settings where different stakeholders
operate with vastly different languages [80]. In the
running example, such ontological properties are
the three safety properties of the system. They are
not expressed syntactically at the level of Petri nets,
but rather, as structural properties of the reacha-
bility graph.

The two main types of inconsistency management
approaches are prevention and allow-and-resolve.
Prevention aims to avoid inconsistent situations
altogether. The applicability of preventive tech-
niques has been demonstrated in the engineering
of complex heterogeneous settings, e.g., by means
of design contracts and ontological reasoning [84].

Lately, preventive techniques have been proven ef-
fective in real-time collaborative modeling settings
as well [17]. Furthermore, preventive inconsistency
management techniques have been well-researched
in database systems [49] previously. A more per-
missive approach to managing inconsistencies is al-
lowing them to emerge, and treating inconsistencies
with the subsequent activities of detection and res-
olution [16].

Various forms of graph-based reasoning are a nat-
ural choice for inconsistency detection and reso-
lution in MDE, where models typically adhere to
graph semantics. Correspondence models are of-
ten used to relate elements of two or more mod-
els. Once a correspondence model is established,
inconsistencies between the two graphs can be de-
tected and in more advanced scenarios, repair ac-
tions can be put in place as well [64]. The utility
of correspondence models has been demonstrated
in multi-disciplinary settings [62, 7]. Triple Graph
Grammars (TGG) [73] improve on correspondence
models by supporting bi-directional synchroniza-
tion, with the possibility of incremental model
updates [36]. TGG have seen success in cross-
domain consistency management as well [35]. Such
techniques are important enablers in the develop-
ment of multi-disciplinary engineering tools [75, 26].
Fully automated model synchronization is not al-
ways feasible and human involvement is required.
In such cases, the human stakeholder can be as-
sisted by automatically generated editing hints [44]
or quick-fixes [40]. Rule-based approaches are of-
ten used in combination with correspondence mod-
els [6] with the added benefit of utilizing rule en-
gines [89], declarative languages [8, 54], and logic
solvers [63, 65] to automate detection and synchro-
nization. Design-space exploration (DSE) has been
used as a more complex form of rule-based model re-
pair, in which optimal sequences of model repair ac-
tions are identified by smart search heuristics [18].

In some cases, additional inconsistency tolerance
techniques are employed between detection and res-
olution. Inconsistencies might be transient by na-
ture, i.e., can get resolved naturally as the engi-
neering process evolves. Equipping inconsistencies
with state [4] and representing models as a sequence
of operations [8] are the most typical approaches.
The benefits of temporal inconsistency tolerance in
MVM have been demonstrated by Easterbrook et
al. [25]. Tolerating inconsistencies decouples the
viewpoints and introduces flexibility in the design
process as deciding when to resolve inconsistencies

4

is the responsibility of the owner of the view.
While the state of the art of inconsistency man-

agement is substantial, the vast majority of ap-
proaches operate at the level of syntax. This is es-
pecially clear in graph-based approaches, in which
the basis of reasoning is the abstract syntax. In con-
trast, semantic approaches rely on the assumption
that inconsistencies may not surface at the level of
syntax in time, and therefore, treating them at the
level of syntax might not be feasible. Therefore,
the semantics—the “meaning”—of models needs to
be externalized and promoted to a first-class citi-
zen. This is typically achieved by employing various
forms of ontologies [38]. Ontologies are structured
and organized representations of domain knowledge
and enable reasoning over multiple domains. As
a consequence, ontologies are especially useful in
multidisciplinary settings [41]. Tagging model ele-
ments with their domain-specific interpretation has
been suggested by Spanoudakis and Zisman [77] to
enrich models with semantic elements and estab-
lish an ontology for the engineering endeavor. By
that, overlaps across domain concepts can be de-
tected irrespective of the (modeling) language in
which they are primarily expressed. More advanced
approaches automate the extraction of ontological
concepts, e.g., Bayesian inference [43]. Once an on-
tology is established, automated reasoners can be
used to detect inconsistencies [84].

In this paper, we focus on semantic inconsistency.
Inconsistencies often do not manifest at the level
of languages, e.g., in misaligned names or values,
but rather, they remain hidden in the semantic do-
main. Encountering them boils down to appropri-
ately interpreting the relevant ontological proper-
ties. Our results are applicable to both horizontal
and vertical inconsistencies, i.e., cases when incon-
sistencies occur between different design artifacts,
and between languages and their instance models,
respectively.

3.2. Ontological properties

The imprecise or vague semantics of modeling
languages are often to blame for unnoticed overlaps
between concerns [47]. Ensuing inconsistency often
does not manifest at the level of syntax, but remains
hidden in the semantic domain [39]. In the running
example, the inconsistency between the configura-
tion engineer and the safety engineers remains hid-
den at the level of the Petri net models. The actual
inconsistency is discovered only when investigating

the meaning of the two Petri nets, e.g., by trans-
lating them to their respective reachability graphs.
In practical scenarios, checking a property often re-
quires more costly property checks, e.g., building
a physical prototype of the system and testing its
behavior under realistic physical conditions.

Apparently, detecting inconsistencies at the level
of syntax might not be sufficient and often, the
management of inconsistencies must be approached
at the level of semantic properties.

The term property is vastly overloaded already
in computer science. UML1 considers properties
a mere named “structural feature”. Some object-
oriented languages (such as C#) consider class
members with a purpose between an attribute (or
field) and a method a property.2 In our terms, a
property is a descriptor of a materialized object or
concept that can be used to classify the said object
or concept into ontological classes. In the running
example, p1 can be used to classify line follower
robots into the safe and not safe classes. It is then
expected, that two objects in the same class are
similar in terms of the classifying property[84]. For
example, a company might be interested in acquir-
ing only safe line followers; but it does not matter
which specific instance they acquire as long as the
instances belong to the same class of safe line fol-
lowers.

Throughout the paper, we maintain the view that
properties are strictly categorical (i.e., they concern
what something is like in their materialized self),
and every dispositional property (i.e., what some-
thing can be or what abilities something possesses)
can be reduced to categorical ones [1, 71]. That is,
classifying an object by a property does not require
a disposition to decide whether the property holds,
but rather, properties are unconditional within a
specific validity frame [91]. For example, the safety
properties in the running example are all categori-
cal properties of the system, because their satisfac-
tion does not depend on any specific disposition—
cf. "the system is safe when the weather is sunny".
Should there exist a safety property related to the
weather, that property can be turned into a cate-
gorical property by extending the validity frame of
the model to entail additional physical conditions,
such as temperature and precipitation, and positing

1https://www.omg.org/spec/UML/2.5.1
2https://docs.microsoft.com/en-us/dotnet/csharp/

language-reference/

5

https://www.omg.org/spec/UML/2.5.1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

the property in this new validity frame. This con-
vention allows for describing properties in linguistic
terms and evaluating the belonging of an object to
a specific ontological class by a function that maps
to a Boolean algebra.

3.3. Model-driven engineering
Model-Driven Engineering (MDE) [72] advocates

modeling the system before it gets realized and to
use these models throughout the lifecycle of the sys-
tem to support operation and maintenance. Mod-
eling the system at its design phase allows for the
analysis of its properties beforehand, resulting in
improved design.

MDE aims to leverage the mechanism of abstrac-
tion to provide succinct representations of the un-
derlying phenomena. Models are typically devel-
oped by means of general-purpose modeling lan-
guages (such as UML [30]) or domain-specific mod-
eling languages (DSL) [31]. Models are used for
the validation and verification of specific proper-
ties, such as safety, security, and performance be-
fore the system is assembled. Specifically, this as-
sembly step is largely automated by code genera-
tion [42]. Recent improvements in MDE, such as
low-code [13] and no-code platforms [55] can even
generate the full code base from models.

Due to the complexity of nowadays engineered
systems, their modeling is not an individual en-
deavor anymore but rather, a collaborative effort
by multiple stakeholders [22, 24]. Such collabora-
tive endeavors typically involve stakeholders from
vastly different domains, who approach the mod-
eled system from their own viewpoints. Multi-view
modeling (MVM) advocates decomposing models
into multiple views that are concerned with spe-
cific aspects of the system [86]. In the running ex-
ample, the safety view supports a select group of
stakeholders to reason about the safety properties
of the system. This view includes three specific con-
cerns of safety (motion, mission, interface), and de-
fines methods to reason about these concerns (Petri
nets and their properties). Another view could be,
for example, the performance view. Such a view
could be concerned with the behavioral characteris-
tics of the line follower and could be supported with
stochastic Petri net models (Petri nets augmented
with statistical distributions on their transitions).

MVM has been shown to be an effective approach
in several complex domains, such as cyber-physical
systems [92]. Views can belong to different do-
mains, i.e., they may represent various aspects of

the single underlying model in different formalisms
and on different levels of abstraction. The usage
of multiple views fosters collaboration among mul-
tiple stakeholders. However, they introduce the
threat of stakeholder views diverging and becom-
ing inconsistent [9]. By the classification of Cor-
ley et al. [15], inconsistencies in MVM settings can
manifest between views or between models to which
the views correspond. The synchronization of views
has been traditionally approached using correspon-
dence models, such as pivot models [75] and bi-
directional model transformations by triple-graph
grammars [73]. This paper provides a general for-
mal framework to reason about consistency and cor-
rectness in MVM settings.

4. Correctness and consistency

In this section, we provide a formal definition of
correctness and consistency, in terms of ontological
properties. Our formal system relies on first-order
logic. However, as remarked at multiple points,
extensions, such as intuitionistic logic [81] and de-
scription logic [82] often allow for different interpre-
tations of correctness and consistency.

As outlined in Section 3, requirements are used
to obtain the properties the final product must sat-
isfy. From this point on, we assume an appropriate
mapping from requirements to the properties and
approach the problem of (in)consistency manage-
ment in terms of properties only. To do so, we will
use the concepts shown in Figure 3.

Figure 3: The relationship between properties and design
models.

4.1. Preliminaries
Let P denote the set of properties a system must

satisfy in order to consider it correct. For our pur-
poses, we consider two design artifacts, di, dj ∈ D.

6

Preq(di) ⊂ P and Preq(dj) ⊂ P denote the sub-
sets of properties required to be satisfied by design
artifacts di and dj , respectively.

4.1.1. Design and completeness
Definition 1 (Design) The collection of design
artifacts (dn)n∈N is said to be design D. That is,
D = ⋃ dn.

The design, sometimes called the virtual product
or the single underlying model (SUM) [2], is the
overall abstract representation of the eventual sys-
tem. In this work, we assume an ideal realization
process (e.g., implementation, manufacturing, as-
sembly) that translates the design to the eventual
system and consider any correctness-related issues
in the realization process out of the scope.

We make no assumptions about the overlap be-
tween the design artifacts.

Example. The design of the system in the running
example (Section 2) is the collection of design arti-
facts in Figure 1a and Figure 2a, i.e., the two Petri
nets.

Definition 2 (Complete design) De-
sign D = ⋃ dn is said to be complete iff
P \⋃{1..n} Preq(dn) ≡ ∅.

That is, there are no properties of the system
that are not required to be satisfied by at least one
design artifact. Only by a complete design can one
prove the correctness of the system. This definition
is not to be confused with Gödel’s notion of syn-
tactic and semantic (in)completeness of formal sys-
tems [34] that are concerned with provability. Our
definition is a mere reflection on the quality of the
design and whether it addresses every stakeholder
concern—i.e., required property.

Example. The design in the running example is
considered a complete design by Definition 2, be-
cause properties p1, p2, and p3 are all required to
be satisfied by at least one design artifact. In fact,
each of these properties are required to be satisfied
both by the safety design (i.e., the Petri net in Fig-
ure 1a) and by the configuration design (i.e., the
Petri net in Figure 2a).

Corollary 1. ∀p ∈ P ∃d ∈ D ∶ p ∈ Preq(d).

That is, for every property p ∈ P exists at least
one design artifact d ∈ D of which p is a required
property.

Example. In the running example, properties p1,
p2, and p3 are required properties of both the safety
and the configuration design artifacts (shown in
Figure 1a and Figure 2a, respectively).

Requirements management tools, such as Ra-
tional DOORS [46] and the IBM Engineering
Requirements Quality Assistant [61] leverage this
proposition when checking for completeness and
calculating various completeness metrics.

Hereinafter in this paper, we assume a complete
design. This assumption, together with the as-
sumption of an ideal assembly process (Definition 1)
allows us to assume that the correctness of the even-
tual system is equivalent to the correctness of the
design. This equivalence, in turn, allows us to treat
the design as the faithful proxy of the eventual
product and to investigate the correctness of the
eventual system by the correctness of the design.
We remark that this assumption limits our reason-
ing to the design phase of systems engineering and
does not permit reasoning about runtime consis-
tency. Given the scope of our work, this is a rea-
sonable limitation. Applications that wish to trans-
pose the results of this paper to real products are
advised to also consider the realization processes
and how it affects key system properties.

4.1.2. Satisfaction of properties
Definition 3 (Satisfaction of a property) A
design artifact d ∈ D is said to satisfy a property
p ∈ P iff JdK ⊨ p, where J⋅K denotes the semantics.

We assume that the satisfaction of a property
per Definition 3 maps to the Boolean field, i.e., ⊨∶
D × P → B, where ∀b ∈ B ∶ ¬¬b = b (excluded
middle).

Consistency rules operationalize property checks.
Often, consistency checks are merely syntactic in
nature, e.g., checking for misalignments in naming
conventions by simple string comparison. Our defi-
nition supports more elaborate consistency checks,
that are semantic in nature, e.g., comparing traces
of quantitative simulations of properties.

4.1.3. Satisfied and not satisfied properties
Let Psat(d) ⊆ Preq(d) and Punsat(d) ⊆ Preq(d)

denote the satisfied and not satisfied required prop-
erties of d, respectively.

7

Definition 4 (Satisfied properties of design
artifacts) ∀p ∈ Psat(d) ⊆ Preq ∶ JdK ⊨ p. That
is, every property p ∈ Psat(d) is satisfied by design
artifact d.

Example. In the running example, property p1 is
satisfied by both the safety design artifact ds in
Figure 1a and the configuration design artifact dc in
Figure 2a, as the invariant specified in the definition
of the property ∄v ∈ V (R) ∶ v[2] + v[4] > 1 holds
in both cases. Thus, JdsK ⊨ p1 and JdcK ⊨ p1.

Definition 5 (Not satisfied properties of de-
sign artifacts) ∀p ∈ Punsat(d) ∶ JdK ⊭ p. That
is, every property p ∈ Punsat(d) is not satisfied by
design artifact d.

Example. In the running example, property
p2 is not satisfied by the configuration de-
sign artifact dc in Figure 2a, as the invari-
ant specified in the definition of the property
∀vi ∈ V (R)∃vj ∈ V (R), vi ≠ vj ∶ (vi, vj) ∈ E(R)
does not hold. Similarly, property p3 is
not satisfied by dc either, as the invariant
specified in the definition of the property
∀i ∈ N, 1 ≤ i ≤ ∣S(P)∣ ∶ ∃v ∈ V (R) ∶ v[i] > 0 does
not hold. Thus, JdcK ⊭ p2 and JdcK ⊭ p3.

Some key properties of property satisfaction in-
clude completeness and unambiguity.

Definition 6 (Completeness of property sat-
isfaction) Preq(d) ≡ Psat(d)⋃Punsat(d).

That is, every required property of d ∈ D is either
satisfied or not satisfied by d.

Definition 7 (Unambiguity of property satis-
faction) Psat(d)⋂Punsat(d) ≡ ∅.

That is, a property cannot be satisfied and not
satisfied by d ∈ D simultaneously.

Hereinafter, we consider complete and unambigu-
ous property satisfaction of design artifacts.

4.2. Correctness

Definition 8 (Correctness of a design arti-
fact) Design artifact d is said to be correct with
respect to its set of required properties Preq(d) iff
∀p ∈ Preq(d) ∶ JdK ⊨ p.
We use the notation ρ(d) to denote the correctness
of a design artifact.

Example. In the running example, the safety de-
sign artifact in Figure 1a, here denoted as ds is a
correct design artifact because it satisfies every re-
quired property. However, the configuration design
artifact in Figure 2a is incorrect, as it does not sat-
isfy properties p2 and p3.

We extend Definition 8 to the overall design. We
consider a design correct if and only if it meets all
the requirements. If at least one requirement is not
met, the design is considered an incorrect product.

Definition 9 (Correctness of a design) De-
sign D is said to be correct with respect to its
set of required properties ⋃{1..n} Preq(dn) iff ∀p ∈

⋃{1..n} Preq(dn)∀d ∈ D ∶ p ∈ Preq(d) ⇒ JdK ⊨ p.
We use the notation ρ(D) to denote the correctness
of a design and we assume ρ ∶ D × P → B, i.e., it
evaluates to boolean.

That is, the overall design is correct if every de-
sign artifact satisfies its required properties.

Example. In the running example, the overall de-
sign is composed of the design artifacts in Figure 1a
and Figure 2a, here denoted by ds and dc, respec-
tively. While ds satisfies every required property,
dc does not (see the example under Definition 8)
and therefore, the overall design is incorrect.

4.3. Consistency

Consistency is inextricably linked to (i) at least
two assertions that disagree about (ii) a property.
Thus, we formalize consistency as follows.

Definition 10 (Consistency of two design ar-
tifacts w.r.t. a property) Design artifacts
di, dj ∈ D are said to be consistent w.r.t to p ∈

P
′
≡ Preq(di) ⋂ Preq(dj) iff JdiK ⊨ p ⇔ JdjK ⊨ p.

If it is needed, we use the notation σp(di, dj) to de-
note the mutual consistency of design artifacts per
property p and we assume σ ∶ D×D×P → B, i.e.,
it evaluates to boolean.

Example. In the running example, the safety model
and the configuration model are consistent with re-
spect to p1, as they both satisfy it.

The above definition can be generalized to the set
of overlapping properties P

′.

Definition 11 (Consistency of two design ar-
tifacts w.r.t. a set of properties) Design ar-
tifacts di, dj ∈ D are said to be consistent w.r.t to

8

the set of properties P
′
≡ Preq(di) ⋂ Preq(dj) iff

∀p ∈ P
′ ∶ JdiK ⊨ p ⇔ JdjK ⊨ p.

If it is needed, we use the notation σ
∗
P (di, dj) to

denote the mutual consistency of design artifacts
per the set of properties P . Again, we assume
σ
∗ ∶ D ×D × P → B, i.e., it evaluates to boolean.

That is, two design artifacts are said to be con-
sistent with respect to a set of properties if they
satisfy exactly the same properties of the set. Due
to Definition 7, either both design artifacts satisfy
the property or jointly do not satisfy it. An incon-
sistency arises when exactly one of the two artifacts
satisfies the property.

It is easy to see that Definition 10 is a special
case of Definition 11 with P

′
= {p}.

4.4. Consistency ⇒ correctness?
Table 1 shows how the satisfaction and dis-

satisfaction of the required properties p ∈

Preq(di)⋂Preq(dj) by two design artifacts di and
dj can lead to their (in)consistency, and the
(in)correctness of the overall design D = {di, dj}.

Table 1: Consistency does not imply correctness.

JdiK ⊨ p JdjK ⊨ p σp(di, dj) ρ(D)
(1) ✓ ✓ ✓ ?
(2) ✓ × × ×
(3) × ✓ × ×
(4) × × ✓ ×

Table 1 yields four cases we investigate below.

Inconsistent and incorrect (Cases 2-3). If di satis-
fies p and dj does not (case 2), or the other way
around (case 3), the two design artifacts are incon-
sistent w.r.t p. This also means that there is at least
one required property p ∈ P

′ that is not satisfied by
dj (case 2) or di (case 3), and therefore, the overall
design D is in an incorrect state.

Consistent and potentially correct (Case 1). If both
di and dj satisfy p, they are consistent as per Def-
inition 10. This, however, does not guarantee cor-
rectness, unless Preq(di) \P ′

≡ ∅ ≡ Preq(dj) \ P
′,

i.e., if Preq(di) ≡ Preq(dj). Apart from this cor-
ner case, in which the two design artifacts have to
satisfy exactly the same set of properties, neither
correctness or incorrectness can be proved from the
premise JdiK ⊨ p ∧ JdjK ⊨ p. The proof is trivial

as from Preq(di) \P ′
≢ ∅ it follows that a property

p ∈ Preq(di) \P ′ may exist such that JdjK ⊭ p, ren-
dering design D incorrect. Consequently, in Case
1, we can talk only about potential correctness.

Consistent but incorrect (Case 4). Perhaps the
most interesting case is the last one. If di and
dj both do not satisfy p, they are still considered
consistent. This follows from Definition 10. How-
ever, both design artifacts are incorrect, and con-
sequently, design D is incorrect. In this case, even
though the models seem to be consistent, at the end
of the development process, the resulting product
will be incorrect.

Example. In the context of the running example,
consider now a configuration model M2 which is
similar to M1 shown in Figure 2, except let the ini-
tial marking of M2 be [0, 0, 1, 0, 1]. That is, only
the rotate motion mode is enabled by default, the
ahead motion mode is not. M2 would not satisfy p2
and p3, due to the reasons M1 does not satisfy them
(explained in Section 2). The not satisfied proper-
ties would render both models incorrect. However,
the two models would be consistent with each other
with respect to p2 and p3 (Case 4), and also with
respect to p1 (Case 1).

4.5. Consequences
The following conclusions can be drawn from Ta-

ble 1.

Theorem 1. Consistency is a necessary but not
sufficient requirement for correctness.

Formally:

ρ(D) ⇒ σ(di, dj) (necessity);
σ(di, dj) /⇒ ρ(D) (insufficiency).

We use Lemma 1 to prove Theorem 1.

Lemma 1. Logical implication evaluates to false iff
the antecedent is true and the consequent is false,
i.e., true → false.

Proof 1. To prove ρ(D) ⇒ σ(di, dj) (necessity),
we remark that there is only one case in Table 1
where ρ(D) can be true, and that is case (1). How-
ever, the σ(di, dj) relationship, in this case, is true,
and with a true consequent, the implication cannot
be false.

9

To prove σ(di, dj) /⇒ ρ(D) (sufficiency), it is
enough to show that there is at least one case in
Table 1 where the antecedent is true and the conse-
quent is false. Case (4) is such a case. □

Theorem 2. Inconsistency is a sufficient re-
quirement for incorrectness.

Formally:

¬σ(di, dj) ⇒ ¬ρ(D).

For the proof, we use Lemma 2.

Lemma 2. ¬X ∨ Y ⊢ X → Y .

Proof 2. Due to Lemma 2, ¬¬σ(di, dj)∨¬ρ(D) ⊢
¬σ(di, dj) ⇒ ¬ρ(D). Due to Definition 7 (or al-
ternatively, due to the assumed excluded middle in
Definition 3), σ(di, dj) ∨ ¬ρ(D) ⊢ ¬¬σ(di, dj) ∨
¬ρ(D). We now show that σ(di, dj) ∨ ¬ρ(D) al-
ways holds.
From Definition 10, it follows that if either JdiK ⊨

p ∧ JdjK ⊨ p (Case 1 in Table 1) holds or JdiK ⊭
p ∧ JdjK ⊭ p (Case 4) holds, σ(di, dj) holds and
consequently, σ(di, dj) ∨ ¬ρ(D) holds.
From Definition 8, it follows that if either JdiK ⊨

p ∧ JdjK ⊭ p (Case 2) holds or JdiK ⊭ p ∧ JdjK ⊨

p (Case 3) holds, ¬ρ(D) holds and consequently,
σ(di, dj) ∨ ¬ρ(D) holds. □

5. Consistency as a heuristic to correctness

While consistency does not imply correctness, it
is still useful to think of consistency as a heuristic
to correctness.

5.1. A definition of heuristic

Romanycia and Pelletier [69] define a heuristic as
«any device, be it a program, rule, piece of knowl-
edge, etc., which one is not entirely confident will be
useful in providing a practical solution, but which
one has reason to believe will be useful, and which is
added to a problem-solving system in expectation
that on average the performance will improve».

In this context, consistency is the device that,
when added to the problem-solving system, i.e., the
engineering process, might be useful in achieving a
practical solution, i.e. a correct system.

On the one hand, one has a reason to believe con-
sistency will be useful in achieving correctness, be-
cause Theorem 2 states that the lack of consistency
surely results in incorrectness. On the other hand,
one cannot be entirely confident consistency will be
useful in achieving the desired correctness, because,
as Theorem 1 states, consistency alone is not a suffi-
cient requirement for correctness. Formal evidence
follows from the conditional probability of correct-
ness under the condition of consistency. Based on
Table 1:

0 <P (ρ(D) ∣ ∃σ(di, dj)) ≤ 1, however (1)
P (ρ(D) ∣ ∄σ(di, dj)) = 0 (2)

Equation 1 corresponds to cases described either
by row 1 or 4 in Table 1. Since row 1 may yield
a correct design (the ρ(D) column is not false or
true), the probability of a correct design is greater
than 0. The probability of correct design is still
strictly less than 1, due to row 4 in Table 1 cer-
tainly yielding an incorrect design. In contrast,
Equation 2, corresponding to cases in rows 2 and 3
in Table 1, shows that the probability of arriving at
a correct product in inconsistent cases is 0.

5.2. Leveraging consistency as a heuristic
Treating consistency as a heuristic to correctness

motivates and justifies putting regular consistency
checks in place. Consistency checks, although often
limited in effectiveness [51], are less costly to imple-
ment than correctness checks. Upon detecting in-
consistencies among design artifacts, incorrectness
can be assumed and proper mechanisms can be trig-
gered. Since repair costs tend to increase sharply
when incorrectness is addressed at later stages of
a project [79, 5], the lower cost of occasional or
even regular consistency checks is justified. Thus,
by adding consistency to the problem-solving sys-
tem, i.e., the engineering process, the performance
of the engineering process is expected to improve
on account of eliminating lingering errors early on
and allowing for better economic outlooks. Further
improvements can be achieved by introducing in-
consistency tolerance mechanisms, as discussed in
previous work [19]. Inconsistency tolerance finds a
trade-off between the safety of immediate repair ac-
tions and the economic outlooks of the engineering
process. Framing consistency as a heuristic, rather
than a constraint allows for the kind of flexibility
required by inconsistency tolerance. A pertinent
example will be given in Section 5.4 in Heuristic 2.

10

5.3. Admissible and consistent heuristics
Admissibility and consistency are two key prop-

erties of heuristics.
A heuristic is said to be admissible if it never

overestimates the goal. In our context, consistency
is an admissible heuristic to correctness if it never
overestimates the degree of correctness. Indeed, the
admissibility of consistency as a heuristic to correct-
ness follows from Theorem 1 as even a fully consis-
tent design does not guarantee a correct design.

A heuristic is said to be consistent if it exhibits
the trait of monotonicity. That is, by continuously
improving consistency, correctness improves contin-
uously as well. Unfortunately, since consistency is
no guarantee of correctness, consistency is typically
not a consistent heuristic to correctness. This fol-
lows from Theorem 1: even if consistency is fully
restored, the system may remain in an incorrect
state.

Thus, it can be concluded, that consistency is an
admissible but not consistent heuristic to correct-
ness. The benefit of consistency being admissible
is that it can serve as a lower bound estimation of
the effort needed to restore correctness. This allows
for defining quality gates that are operationalized
through consistency metrics as thresholds. In the
following, we show two of such consistency metrics.

5.4. Some examples
Here, we provide some typical examples of con-

sistency models and metrics.

Heuristic 1: Number of inconsistent properties.
The number of inconsistent properties is an admis-
sible heuristic h to the correctness of the design.
Formally, following the notations in Figure 3:

h1(D) = ∣(Psat(di)⊖ Psat(dj))⋂P
′∣. (3)

Here, ⊖ denotes the symmetric difference of two
sets and P

′
≡ Preq(di) ⋂ Preq(dj). This follows

from the fact that an inconsistent property im-
plies incorrectness (per Theorem 2) and therefore,
restoring correctness takes at least as many steps
as restoring the consistency of the properties. In
practical terms, however, restoring correctness usu-
ally takes more steps, e.g., due to the challenges of
resolution scheduling [58, 56].

This heuristic can be used as a lower bound esti-
mation of the effort needed to restore correctness,
and repair actions can be triggered after the heuris-
tic crosses a predetermined threshold.

Heuristic 2: Trace distance of views. Heuristic 1
is based on counting binary satisfaction relation-
ships: the heuristic is the sum of the number of
inconsistent properties. A richer basis of reasoning
and a more precise lower bound can be provided by
quantified consistency measures, e.g., based on be-
havioral similarity [19] or domain-specific distance
metrics [78]. Following our previous work [19], the
trace distance of two properties p1 and p2 over a
time window of length λ can be defined as

h2(D) = δλ(p1, p2) =
λ−1

∑
i=0

δ(p1(i), p2(i)). (4)

Here, p(i) denotes the ith observation of p.
Such a heuristic estimates incorrectness in a

quantified way and informs about how hard it may
be to restore correctness. In contrast, Heuristic 1
only informs about how many steps it may take
to restore correctness, but not about the severity
of those steps. Quantified (in)consistency metrics,
such as the one used by Heuristic 2, allow for better
decisions about scheduling repair actions and en-
able inconsistency tolerance mechanisms to be put
in place. The benefits of quantification for incon-
sistency tolerance have been demonstrated in previ-
ous work [19]. Tolerating inconsistencies allows for
engineering processes to temporarily deviate from
overall correctness and incorporate such temporal
deviations into the engineering endeavor. Through
that, engineering processes become more flexible
and agile.

6. Demonstration of principles

To demonstrate the utility of the framework pre-
sented in this paper—especially that of Theorems
1 and 2, and the heuristics defined in (3) and (4).
—we elaborate on a case motivated by an industry
project discussed in previous work [21].

6.1. Setting and challenges

Setting. Two engineering experts, the Electrical
Engineer and the Mechanical Engineer work in col-
laboration to develop the automated guided vehicle
(AGV) in Figure 4. The engineering process in the
prototyping phase is organized into design sprints,
each lasting for a week. During the design sprint,
engineers make changes to their virtual and physi-
cal models to meet the requirements and optimize
the overall design.

11

The AGV is required to carry out a certain
amount of autonomous missions in which it trav-
els between specific locations and monitors the
premises. To meet the autonomy requirements, the
Electrical Engineer must equip the AGV with a bat-
tery of sufficient capacity. In parallel, the Mechan-
ical Engineer must ensure that the battery fits the
platform (base plate).

Challenge. The particular challenge at hand is that
neither of the two engineers can determine whether
their joint design is sufficient to satisfy the auton-
omy goal. At the end of the design sprint, the over-
all design is simulated (i) by running complex sim-
ulations on the digital models, such as computa-
tional fluid dynamics [87] and finite element meth-
ods [88]; and (ii) by conducting measurements on a
3D-printed scale model in a wind tunnel.

This is an expensive and time-consuming part of
the design sprint. It is, therefore, desired that the
overall design is at least correct even if it is not opti-
mal just yet. However, correctness is impossible to
check by resources at the engineers’ disposal within
the sprint.

Intuition. The engineers decided that having con-
sistent ideas in their respective designs is the next
best thing they can do. Here, the intuition is that
by both engineers making decisions independently
from each other that are, in turn, consistent with
each other, the likelihood of arriving at a correct
design improves.

6.2. Consistency as (an informal) heuristic to cor-
rectness

By agreeing on using consistency as the driving
principle, the engineers formulate a heuristic. Re-
call the definition of heuristics by Romanycia and
Pelletier [69] in Section 5: «any device, be it a pro-
gram, rule, piece of knowledge, etc., which one is
not entirely confident will be useful in providing a
practical solution, but which one has reason to be-
lieve will be useful, and which is added to a problem-
solving system in expectation that on average the
performance will improve».

Here, again, consistency is the device that is be-
ing added to the problem-solving system, i.e., the
engineering process, solely because it is the engi-
neers’ intuition that consistency might be useful in
achieving a practical solution, i.e. a correct system.

This is a rather informal heuristic at this point.
In order to make better use of consistency as a
heuristic, more formal definitions are needed.

(a) Front view of the AGV

(b) Top view of the AGV

Figure 4: Schematic design of the automated guided vehicle
(AGV)

6.3. Diverse domains necessitate formal techniques

Due to the diverse domains the experts come
from, they have a hard time establishing a common
vocabulary. For example, the object the Electri-
cal Engineer’s models refer to as the motor might
be the very same object the Mechanical Engineer’s
models refer to as the engine. Clearly, relying on
consistency rules captured in natural language is
not a particularly useful choice, and does not help
much in formalizing the heuristic in Section 6.2.

Instead, we can rely on Definition 9 and Defi-
nition 11 to relate consistency to correctness in a
formal way.

An apt choice of properties, in this case, could be
the following. The electrical design defines property
pe1: batteryCapacityIsSufficient. pe1 is determined
by the size of the battery and the mission time. The
electrical design then defines a property of syntactic
nature, pe2: batterySize.

The consistency with the mechanical design will
be checked through pe2. To this end, the mechani-
cal design defines property pm2: batterySupportSize.
This property, in turn, influences pm1: agvFrameIs-
Safe, which captures whether the overall frame of
the AGV is safe. pm1 is defined as a function of the
inertia matrix and determined by solving the right
differential equations.

Eventually, consistency is defined as pe2 ≤ pm2.
The two engineers will assess this simple rule when-
ever they need to ensure consistency.

12

6.4. Heuristics revisited: Consistency as a formal
heuristic to correctness

Knowing not only if we are inconsistent but
knowing also how inconsistent we are allows for
proper quantification of inconsistency.

When assessing consistency, we could rely on (3)
and count the number of inconsistencies. In our
example, we have only one consistency rule so far,
from which we can define heuristic

h1 ≔ ∣pe2 > pm2∣, (5)

that is, the number of cases in which pe2 > pm2.
The consistency of the two properties is defined as
follows.

σ(pe2, pm2) = {true if h1 = 0;

false if h1 = 1.
(6)

In turn, correctness under h1 is expected as fol-
lows.

ρ(D) = {∼true if σ(pe2, pm2), (Theorem 1);
∼false if ¬σ(pe2, pm2), (Theorem 2).

(7)
Here, ∼true and ∼false mean “assume true” and

“assume false”.
This is a rather shallow heuristic although it al-

ready helps in deciding when to stop with parallel
engineering activities and try aligning the models
of the two experts.

A more appropriate heuristic with richer seman-
tics would be (4), i.e., a distance metric between
the two values. Re-arranging and relaxing the con-
sistency rule, we get

h2 ≔ δλ(pe2, pm2) = ∣pe2 − pm2∣ (8)

as our consistency heuristic.
It is now a matter of setting the right threshold

ϵ so that δλ(pe2, pm2) must not cross in order to
tolerate deviations between the two properties.

σ(pe2, pm2) = {true if h2 ≤ ϵ;

false if h2 ≥ ϵ.
(9)

In turn, correctness under h2 is expected as fol-
lows.

ρ(D) = {∼true if σ(pe2, pm2), (Theorem 1);
∼false if ¬σ(pe2, pm2), (Theorem 2).

(10)

Clearly, (7) and (10) are identical as the defini-
tion of correctness is universal—it is only the oper-
ationalization of consistency checking, i.e., the con-
sistency rules that change.

The higher the threshold in h2, the later incon-
sistency resolution mechanisms must be triggered,
potentially saving costs and engineering time. How-
ever, a high threshold also risks deviations that ren-
der the design incorrect.

6.5. Lessons learned

We saw how intuitive it is to position consistency
as a heuristic to eventual correctness. Even with-
out quantification, the definition of Romanycia and
Pelletier [69] is a useful tool to have educated in-
tuitions about the eventual correctness of a design.
By using formal heuristics as explained in Section 5,
consistency and correctness can be formally defined
as well.

A formal definition of consistency, in turn, allows
for putting mechanisms in place that trigger consis-
tency reconciliation actions upon detecting incon-
sistency. This is sound reasoning due to Theorem 1
and Theorem 2. Separating consistency and cor-
rectness allows for better end-to-end process strate-
gies, as demonstrated by the flexibility in defining
triggers.

As we saw, the definition of correctness is uni-
versal in our framework, as demonstrated by the
identity of (7) and (10). In fact, the definition of
consistency is universal too, and it is only the op-
erationalization of consistency rules that differed in
the above example.

The only real challenges in using our framework
are related to defining the properties of interest and
their associated J⋅K semantic mapping function.

The demonstration also shows that we were able
to reason about consistency and correctness with-
out relying on domain-specific concepts. Defining
consistency in terms of properties helped to detect
inconsistencies of semantic nature without having
to manually inspect models or interpret them.

7. Discussion

We now discuss the takeaways from Section 6 and
some implications of Section 4. Some important
tooling aspects have been described previously by
Finkelstein [28]. Here, we focus on the conceptual
aspects of inconsistency management and their im-
plied language aspects.

13

7.1. When and how to use these results?
The most important takeaway of this paper is

that promoting (in)consistency to a first-class citi-
zen in engineering processes allows for better man-
agement of (in)correctness. Although consistency
does not imply correctness, it is still an admissible
heuristic for it and as such, it allows for putting
proper quality checks and repair actions in place.
This result is best used in engineering processes
in which V&V activities are particularly resource-
intensive and costly, such as the engineering of
mechatronic and cyber-physical systems. While the
costs of regular correctness checks often cannot be
justified in such settings, consistency-based quality
checks offer a viable alternative. Such techniques
can be used at various points of the systems or
software engineering process. Perhaps the best ex-
ample is the V-model [3], in which artifacts of the
design phase are used in the system construction
phase as well, allowing for consistency checks to
be put in place throughout the entirety of the pro-
cess. Its derivations, such as the Y-model [14] rely
on automated correspondence between design and
construction, further improving the utility of con-
sistency checks along the process. Therefore, we
advocate experts and business stakeholders, espe-
cially of such complex domains to incorporate reg-
ular and frequent consistency checks and correlate
their results with the correctness of the system.

The formal framework presented in this pa-
per aligns well with standardized model-based
engineering techniques. For example, the
standard viewpoint-view model defined in the
ISO/IEC/IEEE 42010:2011 Systems and software
engineering – Architecture description standard [48]
defines the first-class superstructure element Cor-
respondence as “identified or named relationship
between two or more architecture description ele-
ments”. However, the standard only mentions ex-
amples (such as equivalence, composition, consis-
tency, satisfaction, etc); concrete modeling or rea-
soning support is not provided. Due to the lack of
formal languages to describe correspondence, tech-
niques relying on this standard are limited to the
syntactic level of models [10], and therefore, consis-
tency management of truly multi-paradigm settings
is not possible. The formal framework presented in
this paper allows for a clear definition of the Cor-
respondence elements of the standard and that, at
the semantic level. It is a matter of defining the
J⋅K semantic mapping function (Definition 3) that
brings a syntactic element to its semantic domain.

Given the popularity of the standard in MDE [11],
formal improvements such as the one presented in
this paper are especially impactful. Support for the
ISO/IEC/IEEE 42010:2011 has been developed in
the PROxIMA framework.3

As shown in Heuristic 2 in Section 5.4, toler-
ance is a powerful enabler to better scaling engi-
neering processes. However, tolerance is the most
overlooked aspect of inconsistency management [80]
and its support should improve by a large margin
in the next generation of inconsistency management
frameworks. We argue that tolerance is implicitly
present in current inconsistency frameworks, as de-
ciding about when to carry out a repair action in-
herently encodes some level of tolerance. By treat-
ing inconsistency as a first-class citizen, its toler-
ance aspect becomes more feasible to reason about
and the enactment of inconsistency treatments can
be further optimized [20]. Recent trends in model-
driven software engineering, such as blended mod-
eling [23] have highlighted the need for such tech-
niques. Therefore, we recommend prospective re-
searchers focus their attention on the various mod-
els and tooling aspects of inconsistency tolerance,
especially in relation to system correctness.

7.2. Language requirements
To fully leverage the potential of promoting in-

consistency to a first-class citizen, modeling and
programming languages need to embrace this idea
as well.

At the syntactic level, language features can be
introduced that are suitable for expressing con-
sistency rules. Such ideas have been explored
in contract-based design [70], most notably in
languages such as Eiffel [59] and the FOCUS
method [12], with each of the approaches rooted
in Hoare’s axiomatic basis for computer program-
ming [45]. However, such techniques are still spo-
radically used. Most languages provide contract-
like features, such as assertions in Java and Python,
but these elements are optional and cannot capture
complex consistency rules. Additional syntactic fa-
cilities can be introduced to define tolerance rules
and resolution procedures. However, these lan-
guages have to work at different meta-levels of the
linguistic stack, and their usability would challenge
current systems engineering methodologies. For ex-
ample, it is not clear who should be responsible for

3https://github.com/proxima-tools/proxima

14

https://github.com/proxima-tools/proxima

capturing such consistency constraints. Due to the
most concerning inconsistencies being situated in
overlaps of views [66], it is also far from given that
complex consistency rules can be fully understood
and mapped by just one stakeholder.

Semantic techniques offer solutions to this prob-
lem. Thus, languages need to improve at this level
as well. Ontologies [37] collect and organize con-
cepts and allow for expressing relationships among
them and properties in terms of description logic.
Due to their domain-agnostic nature, ontologies
are especially suitable for capturing complex con-
cepts that give rise to inconsistencies in the overlaps
of domain-specific views [66]. The integration of
language engineering and ontology engineering has
been first discussed by Kühne [53] in the context of
separating the notion of linguistic and ontological
conformance in multi-level modeling. Multi-layer
ontologies allow for reusing general knowledge (e.g.,
laws of physics) and gradually augmenting those
with more domain-specific knowledge (e.g., laws of
mechanical engineering, laws of electrical engineer-
ing), while still allowing for identifying related con-
cepts in different domains (e.g., an "engine" in the
mechanical domain describes the same real concept
as the "motor" in the electrical domain, w.r.t. a set
of properties that, in turn, constitute the overlap
between views). Lifting properties to the syntactic
level has been shown to be an effective technique in
the design of complex heterogeneous systems [21].
Such ontological facilities must remain hidden be-
hind the syntax of languages and the related mecha-
nisms (such as consistency checks) should be opera-
tionalized in the background, preferably without re-
quiring human input or interaction. Given the com-
putational complexity of such mechanisms, incre-
mental linguistic structures are needed that ensure
a swift evaluation of inconsistencies upon changes
in the model or program.

7.3. Alternative formal frameworks
Throughout this paper, we have relied on first-

order logic (FOL). However, other frameworks can
be considered as the formal underpinning to incon-
sistency management, each with different benefits
and challenges.

Description logic is a provable subset of FOL.
While satisfiability is undecidable in FOL [76], de-
scription logic provides inference mechanisms that
are decidable. The increased provability comes at
the cost of expressiveness: the expressive power
of description logic is situated between those of

FOL and propositional logic. Still, this trade-
off is often beneficial in consistency problems, as
demonstrated, e.g., by Van Der Straeten et al.
[82] who define a subconcept-superconcept clas-
sification mechanism that is decidable and com-
plete. A particularly useful feature of descrip-
tion logic is the distinction between statements
on concept hierarchy—captured in terminological
boxes (TBox)—and statements on relationships be-
tween concepts and individuals—captured in asser-
tion boxes (ABox). This distinction enables the
reasoner to be operationalized only on TBoxes (typ-
ically for classification reasoning), only on ABoxes
(typically for instance reasoning), or both. The
separation of terms also allows treating the inher-
ent complexity of TBoxes separately and reusing
TBox information with different ABoxes. An ad-
ditional benefit of description logic is the lack of
unique name assumption that allows for concepts
with different names to be equivalent by inference.
This aligns very well with stakeholders that possess
different vocabularies, such as the ones in the engi-
neering of complex heterogeneous systems. Finally,
description logic assumes an open world, i.e., it does
not assume the excluded middle (see Definition 3).
While this property improves expressive power, it
also increases the complexity of reasoning.

Modal logic encompasses multiple logic frame-
works with the common trait of being able to distin-
guish between necessity and possibility. By unary
modal operators ◇p – possibility, and □p – ne-
cessity, modal logic improves the expressiveness of
first-order logic. This allows for the useful distinc-
tion between knowing p and p being true. Many
inconsistency cases can be traced back to the lack
of knowledge, e.g., due to miscommunication and
misaligned vocabularies. The ability to explicitly
denote awareness of axioms even without the abil-
ity to evaluate them improves the understanding
of how knowledge is accessible to stakeholders [33]
and as a consequence, improves the robustness of
the engineering setting [32]. Furthermore, modal
logic, and specifically, dynamic epistemic logic [83]
naturally promotes the evolution of the knowledge
base as new axioms are encountered [52]. This
is a substantial improvement over first-order logic
that aligns logic-based reasoning with realistic en-
gineering settings better. However, the improved
expressiveness comes at the price of computational
complexity. Due to this complexity, modal logic,
especially temporal logic frameworks—such as lin-
ear temporal logic (LTL) [85] and computation tree

15

logic (CTL) [68]—are primarily used in verifica-
tion, i.e., in proving correctness. We foresee future
research focusing on extending modal logic to in-
consistency management based on the vast body of
knowledge available on verification.

Intuitionistic logic. Although its discourse is
largely missing from inconsistency management, in-
tuitionistic logic [81] aligns well with our under-
standing of knowledge in engineering processes. In-
tuitionistic logic rejects the excluded middle of clas-
sical logic, i.e., does not assume that ¬¬p = p. In
classical logic, such as first-order logic, if a proof
exists that p is true, the interpretation of ¬p is am-
biguous. Both the interpretation of "there is no
proof of p" and the interpretation of "there is proof
of not-p" are acceptable. To properly distinguish
between the two cases, intuitionistic logic only ac-
cepts assertions as true that can be proved as such.
That is, p being provably true does not automati-
cally imply not-p being false. Rather, not-p has to
be proven on its own right, i.e., not-p has to evalu-
ate to true.

This distinction cleans up the semantics of nega-
tion and works well with modal propositions, in
which often one only knows p, but cannot decide
its truth value. Similarly, in inconsistency man-
agement, it is often the case that "provably con-
sistent" does not imply "not inconsistent". In our
formal framework, we defined consistency of mod-
els with respect to a set of properties. In intuition-
istic logic, even if a proof of consistency exists, one
cannot be entirely sure that two models are not in-
consistent w.r.t. another set of properties. This, in
turn, aligns well with dynamic epistemic logic [83]
and forces the user of the framework to maintain
an open world assumption: since the set of axioms
is subject to change, all that current provability of
consistency buys is ◇p (possibly consistent), but
not □p (necessary consistent). Again, the improved
expressiveness comes at the price of computational
complexity. The lack of excluded middle eradicates
the mechanism of proof by contradiction from the
formal framework, and by extension, widely used
reasoning and explanation techniques such as the
generation of counterexamples are unavailable.

A frequent criticism against inconsistency man-
agement frameworks tapping into the semantic do-
main of models is their cumbersome usability and
limited applicability [51]. The logic frameworks
presented in this subsection provide substantially
increased expressiveness to describe sophisticated
consistency mechanisms and by that, they can con-

tribute to the better applicability of the next gen-
eration of inconsistency management frameworks.
However, as emphasized, with improved expressive-
ness, reasoning mechanisms become more compu-
tationally demanding as well. We advocate future
research focusing on (i) the trade-off between ex-
pressiveness and computational complexity, and (ii)
multi-paradigm methods in which different formal
frameworks can be used to underpin inconsistency
management systems.

8. Conclusion

In this paper, we have validated the generally ac-
cepted philosophy of consistency management, that
instead of simply removing consistency from an en-
gineering process, one should reason about properly
managing inconsistency. We have shown formal
proofs of consistency being an insufficient indicator
of eventual correctness, and inconsistency being a
sufficient indicator of eventual incorrectness. We
have drawn the conclusion that over-committing to
consistency might not be the best strategy in terms
of costs and the end-to-end performance of the un-
derlying engineering process. We suggested future
directions to researchers of the topic, tool builders,
and language engineers.

Recent years have seen exciting new directions
in consistency management, focusing on a wide
array of artifacts between consistency must be
maintained, e.g., between models and implemen-
tation [50], and between models and data [90]. We
anticipate such complex consistency management
scenarios making use of the sound foundations our
framework provides.

Future work will focus on the modalities of the
presented formal framework under open-world and
closed-world assumptions [60] and gaining a better
understanding of modeling under uncertainty [27].

Acknowledgement

The authors wish to acknowledge the truly con-
structive remarks of the reviewers and the editor
that substantially improved this manuscript.

References

[1] D. M. Armstrong. The causal theory of properties:
Properties according to shoemaker, ellis, and others.
Philosophical Topics, 26(1/2):25–37, 1999.

16

[2] C. Atkinson and D. Draheim. Cloud-aided software en-
gineering: evolving viable software systems through a
web of views. In Software engineering frameworks for
the cloud computing paradigm, pages 255–281. Springer,
2013.

[3] S. Balaji and M. S. Murugaiyan. Waterfall vs. v-model
vs. agile: A comparative study on sdlc. International
Journal of Information Technology and Business Man-
agement, 2(1):26–30, 2012.

[4] R. Balzer. Tolerating inconsistency. In Proceedings
of the 13th International Conference on Software En-
gineering, pages 158–165. IEEE Computer Society /
ACM Press, 1991.

[5] K. Beck. Extreme programming explained: embrace
change. addison-wesley professional, 2000.

[6] S. M. Becker and A. Körtgen. Integration tools for con-
sistency management between design documents in de-
velopment processes. In Graph Transformations and
Model-Driven Engineering - Essays Dedicated to Man-
fred Nagl on the Occasion of his 65th Birthday, volume
5765 of LNCS, pages 683–718. Springer, 2010.

[7] A. Bhave, B. H. Krogh, D. Garlan, and B. R. Schmerl.
View consistency in architectures for cyber-physical sys-
tems. In 2011 IEEE/ACM International Conference on
Cyber-Physical Systems, ICCPS 2011, pages 151–160.
IEEE, 2011.

[8] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. De-
tecting model inconsistency through operation-based
model construction. In 30th International Conference
on Software Engineering (ICSE 2008), pages 511–520.
ACM, 2008.

[9] D. Bork. A Development Method for the Conceptual
Design of Multi-View Modeling Tools with an Empha-
sis on Consistency Requirements. PhD thesis, Univer-
sity of Bamberg, 2015. URL https://opus4.kobv.de/
opus4-bamberg/frontdoor/index/index/docId/44613.

[10] N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, and
A. Helleboogh. Characterizing relations between archi-
tectural views. In Software Architecture, pages 66–81,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-88030-1.

[11] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren.
Viewpoints, formalisms, languages, and tools Cyber-
Physical Systems. In Proceedings of the 6th Interna-
tional Workshop on Multi-Paradigm Modeling, MPM-
MoDELS 2012, pages 49–54. ACM, 2012.

[12] M. Broy and K. Stølen. Specification and Development
of Interactive Systems - Focus on Streams, Interfaces,
and Refinement. Monographs in Computer Science.
Springer, 2001.

[13] J. Cabot. Positioning of the low-code movement within
the field of model-driven engineering. In Proceedings
of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems:
Companion Proceedings, pages 1–3, 2020.

[14] L. F. Capretz. Y: New component-based software life
cycle model. Journal of Computer Science, Science, 1
(1):76, 2005.

[15] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo. Mod-
ern Software Engineering Methodologies for Mobile and
Cloud Environments, book section Cloud-based Multi-
View Modeling Environments, pages 120–139. Num-
ber 7. IGI Global, 2016.

[16] I. David. A Foundation for Inconsistency Management
in Model-Based Systems Engineering. PhD thesis, Uni-

versity of Antwerp, Belgium, 7 2019.
[17] I. David and E. Syriani. Real-time collaborative multi-

level modeling by conflict-free replicated data types.
Software & Systems Modeling, 2022.

[18] I. David, J. Denil, K. Gadeyne, and H. Vangheluwe.
Engineering Process Transformation to Manage
(In)consistency. In Proceedings of the 1st Interna-
tional Workshop on Collaborative Modelling in MDE
(COMMitMDE 2016) co-located with ACM/IEEE 19th
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS 2016), volume
1717 of CEUR Workshop Proceedings, pages 7–16.
CEUR-WS.org, 2016.

[19] I. David, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin,
A. Cicchetti, and K. Vanherpen. Towards inconsistency
tolerance by quantification of semantic inconsistencies.
In Proceedings of the 1st International Workshop on
Collaborative Modelling in MDE (COMMitMDE 2016),
volume 1717 of CEUR Workshop Proceedings, pages 35–
44. CEUR-WS.org, 2016.

[20] I. David, B. Meyers, K. Vanherpen, Y. V. Tendeloo,
K. Berx, and H. Vangheluwe. Modeling and enactment
support for early detection of inconsistencies in engi-
neering processes. In Proceedings of MODELS 2017
Satellite Event: Workshops co-located with ACM/IEEE
20th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2017), vol-
ume 2019 of CEUR Workshop Proceedings, pages 145–
154. CEUR-WS.org, 2017.

[21] I. David, J. Denil, and H. Vangheluwe. Process-oriented
Inconsistency Management in Collaborative Systems
Modeling. In J. Machado, L. Mendes Gomes, H. Guerra,
and A. Abelha, editors, 16th International Industrial
Simulation Conference 2018, ISC 2018, pages 54–61.
Eurosis, 2018.

[22] I. David, K. Aslam, S. Faridmoayer, I. Malavolta,
E. Syriani, and P. Lago. Collaborative model-driven
software engineering: A systematic update. In 24th
International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2021, Fukuoka,
Japan, October 10-15, 2021, pages 273–284. IEEE,
2021.

[23] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Cic-
cozzi, I. Malavolta, A. Raschke, J.-P. Steghöfer, and
R. Hebig. Blended Modeling in Commercial and Open-
source Model-Driven Software Engineering Tools: A
Systematic Study. Software & Systems Modeling, 2022.
ISSN 1619-1374. doi: 10.1007/s10270-022-01010-3.

[24] I. David, K. Aslam, I. Malavolta, and P. Lago. Collabo-
rative Model-Driven Software Engineering – A System-
atic Survey of Practices and Needs in Industry. Journal
of Systems and Software, 199:111626, 2023. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2023.111626.

[25] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nu-
seibeh. Coordinating distributed viewpoints: the
anatomy of a consistency check. Concurrent Engineer-
ing, 2(3):209–222, 1994.

[26] A. Egyed. Automatically detecting and tracking in-
consistencies in software design models. IEEE Trans.
Software Eng., 37(2):188–204, 2011. doi: 10.1109/TSE.
2010.38.

[27] M. Famelis, R. Salay, and M. Chechik. Partial mod-
els: Towards modeling and reasoning with uncertainty.
In 34th International Conference on Software Engi-
neering, ICSE, pages 573–583. IEEE Computer Society,

17

https://opus4.kobv.de/opus4-bamberg/frontdoor/index/index/docId/44613
https://opus4.kobv.de/opus4-bamberg/frontdoor/index/index/docId/44613

2012.
[28] A. Finkelstein. A foolish consistency: Technical chal-

lenges in consistency management. In Database and
Expert Systems Applications, 11th International Con-
ference, DEXA 2000, volume 1873 of LNCS, pages 1–5.
Springer, 2000.

[29] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspec-
tive specifications. IEEE Transactions on Software En-
gineering, 20(8):569–578, 1994.

[30] M. Fowler. UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional,
2004.

[31] M. Fowler. Domain-specific languages. Pearson Educa-
tion, 2010.

[32] A. Fraga, J. L. Morillo, L. Alonso, and J. M. Fuentes.
Ontology-assisted systems engineering process with fo-
cus in the requirements engineering process. In Com-
plex Systems Design & Management, Proceedings of
the Fifth International Conference on Complex Sys-
tems Design & Management CSD&M 2014, pages 149–
161. Springer, 2014.

[33] A. Fraga, J. L. Morillo, and G. Génova. Towards a
methodology for knowledge reuse based on semantic
repositories. Inf. Syst. Frontiers, 21(1):5–25, 2019.

[34] T. Franzén. Gödel’s theorem: an incomplete guide to
its use and abuse. AK Peters/CRC Press, 2005.

[35] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl,
S. Pook, and J. Rieke. Management of cross-domain
model consistency during the development of advanced
mechatronic systems. In DS 58-6: Proceedings of ICED
09, the 17th International Conference on Engineering
Design, Vol. 6, Design Methods and Tools (pt. 2), Palo
Alto, CA, USA, 24.-27.08. 2009, 2009.

[36] H. Giese and S. Hildebrandt. Incremental model syn-
chronization for multiple updates. In Proceedings of
the Third International Workshop on Graph and Model
Transformations, pages 1–8. ACM, 2008.

[37] S. Grimm, A. Abecker, J. Völker, and R. Studer. On-
tologies and the semantic web. In Handbook of Semantic
Web Technologies, pages 507–579. Springer, 2011.

[38] N. Guarino, D. Oberle, and S. Staab. What is an ontol-
ogy? In Handbook on ontologies, pages 1–17. Springer,
2009.

[39] D. Harel and B. Rumpe. Meaningful Modeling: What’s
the Semantics of "Semantics"? Computer, 37(10):64–
72, 2004.

[40] Á. Hegedüs, Á. Horváth, I. Ráth, M. C. Branco, and
D. Varró. Quick fix generation for dsmls. In 2011
IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2011, Pittsburgh, PA,
USA, September 18-22, 2011, pages 17–24. IEEE, 2011.
doi: 10.1109/VLHCC.2011.6070373.

[41] P. Hehenberger, A. Egyed, and K. Zeman. Consis-
tency checking of mechatronic design models. In ASME
2010 International Design Engineering Technical Con-
ferences and Computers and Information in Engineer-
ing Conference, pages 1141–1148. American Society of
Mechanical Engineers, 2010.

[42] J. Herrington. Code generation in action. Manning
Publications Co., 2003.

[43] S. J. Herzig and C. J. Paredis. A conceptual basis for
inconsistency management in model-based systems en-
gineering. Procedia CIRP, 21:52–57, 2014. 24th CIRP
Design Conference.

[44] A. Hessellund, K. Czarnecki, and A. Wasowski. Guided
development with multiple domain-specific languages.
In Model Driven Engineering Languages and Systems,
10th International Conference, MoDELS 2007, volume
4735 of LNCS, pages 46–60. Springer, 2007.

[45] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Commun. ACM, 12(10):576–580, 1969.

[46] E. Hull, K. Jackson, and J. Dick. Doors: a tool to man-
age requirements. In Requirements engineering, pages
187–204. Springer, 2002.

[47] Z. Huzar, L. Kuzniarz, G. Reggio, and J. Sourrouille.
Consistency problems in UML-based software devel-
opment. In UML Modeling Languages and Applica-
tions, «UML» 2004 Satellite Activities, volume 3297
of LNCS, pages 1–12. Springer, 2004.

[48] ISO/IEC/IEEE. Systems and software engineering – ar-
chitecture description. ISO/IEC/IEEE 42010:2011(E)
(Revision of ISO/IEC 42010:2007 and IEEE Std 1471-
2000), pages 1–46, 1 2011.

[49] P. R. Johnson and R. Thomas. Maintenance of dupli-
cate databases. RFC, 677:1–10, 1975.

[50] R. Jongeling, J. Fredriksson, F. Ciccozzi, A. Cicchetti,
and J. Carlson. Towards consistency checking between
a system model and its implementation. In Ö. Babur,
J. Denil, and B. Vogel-Heuser, editors, Systems Mod-
elling and Management, pages 30–39, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-
58167-1.

[51] R. Jongeling, F. Ciccozzi, J. Carlson, and A. Cic-
chetti. Consistency management in industrial continu-
ous model-based development settings: a reality check.
Software and Systems Modeling, pages 1–20, 2022.

[52] H. Kannan. Formal reasoning of knowledge in systems
engineering through epistemic modal logic. Syst. Eng.,
24(1):3–16, 2021.

[53] T. Kühne. Matters of (meta-)modeling. Softw. Syst.
Model., 5(4):369–385, 2006.

[54] J. Le Noir, O. Delande, D. Exertier, M. A. A. da Silva,
and X. Blanc. Operation based model representation:
Experiences on inconsistency detection. In Modelling
Foundations and Applications - 7th European Confer-
ence, ECMFA 2011, volume 6698 of LNCS, pages 85–
96. Springer, 2011.

[55] T. C. Lethbridge. Low-code is often high-code, so
we must design low-code platforms to enable proper
software engineering. In International Symposium on
Leveraging Applications of Formal Methods, pages 202–
212. Springer, 2021.

[56] H. Liu, Z. Ma, W. Shao, and Z. Niu. Schedule of bad
smell detection and resolution: A new way to save ef-
fort. IEEE Trans. Software Eng., 38(1):220–235, 2012.
doi: 10.1109/TSE.2011.9.

[57] R. Lloyd and C. I. S. Writer. Metric mishap caused loss
of nasa orbiter. CNN Interactive, 1999.

[58] T. Mens, G. Taentzer, and O. Runge. Detect-
ing structural refactoring conflicts using critical pair
analysis. In Proceedings of the Workshop on Soft-
ware Evolution through Transformations: Model-based
vs. Implementation-level Solutions, SETraICGT 2004,
Rome, Italy, October 2, 2004, volume 127 of Electronic
Notes in Theoretical Computer Science, pages 113–128.
Elsevier, 2004. doi: 10.1016/j.entcs.2004.08.038.

[59] B. Meyer. Eiffel: A language and environment for soft-
ware engineering. J. Syst. Softw., 8(3):199–246, 1988.

[60] A. Motro. Integrity = validity + completeness. ACM

18

Trans. Database Syst., 14(4):480–502, 1989.
[61] A. Post and T. Fuhr. Case study: How well can ibm’s"

requirements quality assistant" review automotive re-
quirements? In REFSQ Workshops, 2021.

[62] A. Qamar, J. Wikander, and C. During. A mechatronic
design infrastructure integrating heterogeneous models.
In 2011 IEEE International Conference on Mechatron-
ics, pages 212–217. IEEE, 2011.

[63] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and
G. Botterweck. Consistency checking for the evolution
of cardinality-based feature models. In 18th Interna-
tional Software Product Line Conference, SPLC ’14,
pages 122–131. ACM, 2014.

[64] C. C. Raţiu, W. K. G. Assunção, R. Haas, and
A. Egyed. Reactive links across multi-domain engineer-
ing models. In Proceedings of the 25th International
Conference on Model Driven Engineering Languages
and Systems, MODELS ’22, page 76–86, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450394666. doi: 10.1145/3550355.3552446.
URL https://doi.org/10.1145/3550355.3552446.

[65] A. Rauzy and Y. Dutuit. Exact and truncated computa-
tions of prime implicants of coherent and non-coherent
fault trees within aralia. Reliability Engineering & Sys-
tem Safety, 58(2):127–144, 1997. ISSN 0951-8320. doi:
https://doi.org/10.1016/S0951-8320(97)00034-3. ES-
REL ’95.

[66] J. Reineke and S. Tripakis. Basic problems in multi-
view modeling. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 20th International
Conference, TACAS 2014, volume 8413 of LNCS, pages
217–232. Springer, 2014.

[67] W. Reisig. Petri Nets: An Introduction, volume 4 of
EATCS Monographs on Theoretical Computer Science.
Springer, 1985.

[68] M. Reynolds. An axiomatization of full computation
tree logic. J. Symb. Log., 66(3):1011–1057, 2001.

[69] M. H. Romanycia and F. J. Pelletier. What is a heuris-
tic? Computational Intelligence, 1(1):47–58, 1985.

[70] A. L. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming dr. frankenstein: Contract-based
design for cyber-physical systems. Eur. J. Control, 18
(3):217–238, 2012.

[71] J. Schaffer. Quiddistic knowledge. Philosophical Stud-
ies, 123(1):1–32, 2005.

[72] D. C. Schmidt. Model-driven engineering. Computer-
IEEE Computer Society, 39(2):25, 2006.

[73] A. Schürr. Specification of graph translators with triple
graph grammars. In Graph-Theoretic Concepts in Com-
puter Science, 20th International Workshop, WG ’94,
volume 903 of LNCS, pages 151–163. Springer, 1994.

[74] S. Sedhumadhavan and E. Niranjana. An analysis of
path planning for autonomous motorized robots. Inter-
national Journal of Advance Research, Ideas and Inno-
vations in Tech6nology, 3(6):1234–1257, 2017.

[75] A. A. Shah, A. A. Kerzhner, D. Schaefer, and C. J. J.
Paredis. Multi-view modeling to support embedded sys-
tems engineering in sysml. In Graph Transformations
and Model-Driven Engineering - Essays Dedicated to
Manfred Nagl on the Occasion of his 65th Birthday,
volume 5765 of LNCS, pages 580–601. Springer, 2010.

[76] R. M. Smullyan. First-order logic. Courier Corporation,
1995.

[77] G. Spanoudakis and A. Zisman. Inconsistency man-
agement in software engineering: Survey and open re-

search issues. In Handbook of Software Engineering
and Knowledge Engineering: Volume I: Fundamentals,
pages 329–380. World Scientific, 2001.

[78] E. Syriani, R. Bill, and M. Wimmer. Domain-specific
model distance measures. J. Object Technol., 18(3):3–1,
2019.

[79] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National In-
stitute of Standards and Technology, 2002. URL
https://www.nist.gov/system/files/documents/
director/planning/report02-3.pdf.

[80] W. Torres, M. G. J. van den Brand, and A. Sere-
brenik. A systematic literature review of cross-domain
model consistency checking by model management
tools. Softw. Syst. Model., 20(3):897–916, 2021.

[81] D. van Dalen. Intuitionistic logic. In Handbook of philo-
sophical logic, pages 225–339. Springer, 1986.

[82] R. Van Der Straeten, T. Mens, J. Simmonds, and
V. Jonckers. Using description logic to maintain con-
sistency between UML models. In «UML» 2003 -
The Unified Modeling Language, Modeling Languages
and Applications, 6th International Conference, vol-
ume 2863 of LNCS, pages 326–340. Springer, 2003.

[83] H. Van Ditmarsch, W. van der Hoek, J. Y. Halpern, and
B. Kooi. Handbook of epistemic logic. College Publica-
tions, 2015.

[84] K. Vanherpen et al. Ontological reasoning for consis-
tency in the design of cyber-physical systems. In 1st
International Workshop on Cyber-Physical Production
Systems, CPPSCPSWeek 2016, pages 1–8. IEEE Com-
puter Society, 2016.

[85] M. Y. Vardi. An automata-theoretic approach to lin-
ear temporal logic. In F. Moller and G. M. Birtwistle,
editors, Logics for Concurrency - Structure versus Au-
tomata (8th Banff Higher Order Workshop, Banff,
Canada, August 27 - September 3, 1995, Proceedings),
volume 1043 of LNCS, pages 238–266. Springer, 1995.

[86] R. von Hanxleden, E. A. Lee, C. Motika, and
H. Fuhrmann. Multi-view Modeling and Pragmatics
in 2020 – Position Paper on Designing Complex Cyber-
Physical Systems. In Large-Scale Complex IT Systems.
Development, Operation and Management, LNCS.

[87] J. F. Wendt, editor. Computational Fluid Dynam-
ics. Springer Berlin Heidelberg, 2009. doi: 10.1007/
978-3-540-85056-4. URL https://doi.org/10.1007/
978-3-540-85056-4.

[88] J. Whiteley. Finite Element Methods. Springer
International Publishing, 2017. doi: 10.1007/
978-3-319-49971-0. URL https://doi.org/10.1007/
978-3-319-49971-0.

[89] Y. Xue and B. Feng. Checking validity of topic maps
with drools. In The 2nd International Conference on
Information Science and Engineering, pages 174–177,
2010. doi: 10.1109/ICISE.2010.5689569.

[90] M. Zaheri. Towards consistency management in low-
code platforms. In Proceedings of the 25th International
Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, MODELS ’22,
page 176–181, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450394673. doi:
10.1145/3550356.3558510. URL https://doi.org/10.
1145/3550356.3558510.

[91] B. P. Zeigler. Theory of Modeling and Simulation. John
Wiley, 1976.

[92] L. Zhang. Multi-view approach for modeling aerospace

19

https://doi.org/10.1145/3550355.3552446
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://doi.org/10.1007/978-3-540-85056-4
https://doi.org/10.1007/978-3-540-85056-4
https://doi.org/10.1007/978-3-319-49971-0
https://doi.org/10.1007/978-3-319-49971-0
https://doi.org/10.1145/3550356.3558510
https://doi.org/10.1145/3550356.3558510

cyber-physical systems. In 2013 IEEE Interna-
tional Conference on Green Computing and Commu-
nications (GreenCom) and IEEE Internet of Things
(iThings) and IEEE Cyber, Physical and Social Com-
puting (CPSCom), Beijing, China, August 20-23,
2013, pages 1319–1324. IEEE, 2013. doi: 10.1109/
GreenCom-iThings-CPSCom.2013.229.

20

	Introduction
	Running example
	Background and related work
	Inconsistencies and their management
	Ontological properties
	Model-driven engineering

	Correctness and consistency
	Preliminaries
	Design and completeness
	Satisfaction of properties
	Satisfied and not satisfied properties

	Correctness
	Consistency
	Consistency correctness?
	Consequences

	Consistency as a heuristic to correctness
	A definition of heuristic
	Leveraging consistency as a heuristic
	Admissible and consistent heuristics
	Some examples

	Demonstration of principles
	Setting and challenges
	Consistency as (an informal) heuristic to correctness
	Diverse domains necessitate formal techniques
	Heuristics revisited: Consistency as a formal heuristic to correctness
	Lessons learned

	Discussion
	When and how to use these results?
	Language requirements
	Alternative formal frameworks

	Conclusion

