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Abstract—The design of Cyber-Physical Systems (CPS) in-
volves a multitude of stakeholders. Each of these stakeholders
has a specific view on the system under design. Unfortunately,
when designers create artefacts in their different views in a
concurrent manner, the integration of the different views may
reveal inconsistencies. This leads to time consuming, iterative
design processes where inconsistencies are resolved, in turn
possibly creating new ones. It is hence necessary to reason
explicitly about the view-specific properties that depend on, and
influence properties of other views. This enables consistency
during integration and reduces the development time and effort.
In this paper we formalise the interrelationships between the dif-
ferent views, in the context of different design processes, to allow
designers to meaningfully and efficiently manage inconsistencies.
Our formalisation introduces ontological domain properties and
their relations as the link between the view-specific properties
used by the stakeholders. Thus, our approach combines the state
of the art of Model-Based Systems Engineering (MBSE) and
Semantic Web. The relevance of this approach is demonstrated
by means of a motivating example.

I. INTRODUCTION

The development process of a Cyber-Physical System (CPS)
is characterised by a collaboration of different teams in mul-
tiple engineering disciplines, which we call stakeholders [1]-
[3]. Given a set of requirements, representing the behaviour of
the real-world system in a certain context, stakeholders express
their individual concerns through a set of properties specific to
their own view on the system under design. As a consequence,
requirements are —often implicitly— shared among stakeholders
due to the overlapping sets of properties. This overlap puts
constraints on the design processes of the domain-specific
views.

We experience this in current CPS design processes. For
example, both control and embedded software engineers derive
the properties which should hold for their view of a system
with an implicit knowledge of each other’s domain. For a
control engineer it is, for example, important to know how
fast outputs can be computed and written, which depends

on the hardware platform. Due to his limited knowledge
of the embedded domain, however, a control engineer may
overestimate available hardware resources such as processor
speed. During integration, the embedded software engineer
chooses a processor type based on, for example, its cost. This
might lead to a lower processor speed than what was assumed
by the control engineer. As a result, integration affects the
performance of the control algorithm.

This introductory example clearly demonstrates how both
engineering views (stakeholders) use incomplete assumptions
of each others view. Shared properties are not (fully) taken
into account, such that consistency cannot be guaranteed.
Consistency means the absence of inconsistencies: situations
where multiple views imply conflicting values for common
properties that may be derived from them. This results in iter-
ative, time consuming design processes where inconsistencies
are resolved, in turn possibly creating new ones. Because the
views in this example are at different levels of abstraction, we
classify this type of (in)consistency as vertical (in)consistency.
The notion of vertical consistency also occurs within the
engineering view. For example, during the modelling of a
control algorithm, a more abstract control model is used at
a higher level of abstraction while its refinement adds more
detail at a lower level of abstraction. Vertical consistency
should be maintained during the refinement process as well,
such that the (behavioural) properties of the abstract control
model are maintained after refinement.

Horizontal (in-)consistency pertains to models at the same
level of abstraction. An example is the modelling of an
electrical motor subsystem. Electrical and mechanical views
exist for this system. These are considered at a same level of
abstraction if they allow reasoning about exactly the same set
of properties (such as power). To be consistent, analysis of
both models must always yield identical values for each of
these properties.

During the last decade, many attempts were made to resolve



vertical inconsistency by supporting control engineers with
tools enabling them to make hardware properties explicit [4]—-
[6]. To this end, blocks introducing a certain hardware prop-
erty are added to the control model. The blocks encode
an abstraction of property effects (such as time) due to
the hardware platform on which the controller is deployed.
Contract-Based Design (CBD) [7]-[9] as a methodology, is
gaining popularity in the design of CPS. Its use originates from
computer programming where a set of pre- and postconditions
defines under which conditions a system promises to operate
satisfying desired properties. Similarly, by defining contracts
between different engineering views in CPS design, view-
specific properties are balanced against each other in a pre-
liminary negotiation phase. This design methodology enables
concurrent engineering (co-design) in which synchronization
occurs on a regular basis. Thus, both horizontal and vertical
consistency can be guaranteed.

From our experience with design processes, however, trans-
lating view-specific properties from one domain to another
seems to be hard for engineers and is often done in an ad
hoc fashion. To address this issue and to facilitate CBD, we
express these interrelations using an ontological framework. To
build this framework, we make the implicit knowledge of each
stakeholder explicit. During the translation of requirements to
view-specific properties, each stakeholder keeps in mind cer-
tain domain properties, which we call ontological properties.
For example, a control engineer implicitly thinks about control
performance, reaction time, and safety. The embedded engi-
neer reasons about schedulability, processor load, cost, etc.
Due to overlap in requirements, some ontological properties
will be shared and/or will influence each other such that the
related view-specific properties will be shared or influenced as
well. By making the influence relations between ontological
properties explicit in our framework, we are able to explicitly
translate related properties used in different views.

Reasoning about ontologies (i.e., relating ontological prop-
erties) and tracing the properties at the modelling level to these
ontologies allows us to examine current design processes.
The processes can be restructured accordingly to reduce the
number of costly design iterations. Note that we do not comply
with the Semantic Web definition of ontologies since we have
not yet committed to formalisms/languages/techniques/tools to
use for ontological reasoning.

The rest of this paper is structured as follows. The usability
of our approach is demonstrated through a motivating example
in Section II. Section III presents three generalised design
operations showing how ontological reasoning can be enabled.
Given these generalised operations, we revisit the motivating
example in Section IV. Section V discusses our fundamental
approach and gives an outlook to future work. Section VI
summarises the related work. Finally, Section VII concludes.

II. MOTIVATING EXAMPLE

We use the design of a power window at the passenger
side of a vehicle to illustrate the usefulness of our ap-
proach. Although the power window seems more related to

engineering an embedded system rather than a production
system, it contains properties which are highly related to a
production system: (a) it contains both computational and
physical elements, (b) it contains sensors and actuators, and (c)
when closing it might cause live threatening injuries such that
safety is highly important. This section introduces the power
window example and its design process. The case study will
be revisited in Section IV using the foundations introduced in
Section III.

For the embedded system to be designed, a set of require-
ments describe the behaviour of the system within a given
context. In this case, the context of the power window is a
vehicle, for which the behaviour at the passenger side can be
described as follows [10]:

1) An electrical motor will operate the power window.

2) The window has a width and a height of respectively

1057 mm and 768 mm.

3) The power window can be operated by both driver and

passenger. Priority is given to the driver.

4) The power window should start moving within 200 ms

after a command is issued.

5) The power window shall be fully opened or closed within

45s.

6) Detection of a clamped object when closing the window

should lower the window by 10cm.

For the design of the power window, three stakeholders
are involved: a mechanical, control and embedded engineer.
Depending on their view of the system, each stakeholder
considers one or more requirements. The mechanical engineer
chooses a motor whose characteristics (voltage, current, speed,
torque, etc.) satisfy the requirements 1, 2 and 5. Furthermore,
he creates a plant model representing the physical elements of
the window and the motor.

The plant model is used by the control engineer, who is
concerned with all requirements except 1 and 2, to synthesise
the modelled control algorithm. It goes without saying that
control performance will be of the utmost importance for the
control engineer during the design of the control algorithm.
Note that control performance is an ontological property which
a control engineer implicitly keeps in mind when deciding on
modelling properties such as ‘sample rate’.

An embedded engineer considers all of the requirements
except 2 and the priority part of 3 in his view, such that the
control algorithm deployed onto the Electronic Control Unit
(ECU) is able to operate the window. He is concerned with
hardware details (e.g. processor speed and period of tasks)
instead of the behaviour of the control algorithm. Although
there are shared requirements between the different views, the
embedded engineer keeps in mind ontological properties such
as schedulability when specifying properties like ‘processor
speed’.

Let us consider the relationships between control and em-
bedded engineer to get to the point of this illustrating example.
As some of the requirements are shared among views, it may
be clear that view-specific properties related to those shared
requirements should be consistent. Due to the view-specific



interpretation of the requirements, however, engineers reason
about different ontological properties: control performance for
the control engineer and schedulability for the deployment
engineer. Unintentionally, this leads to inconsistencies between
views. In current design processes, for example, engineers
have limited aids in estimating the impact of their design
choices. Therefore, it is common for a control engineer to
assume almost unlimited hardware resources such that view-
specific properties such as ‘computation and write time of
outputs’ are underestimated. As a consequence, control per-
formance is verified using a wrong abstraction of the hardware
platform. On the other hand, an embedded engineer strives for
a schedulable system by deploying the control algorithm onto
an ECU such that its load is regarded as safe. As a result,
an ECU with enough resources (e.g., ‘processor speed’) is
selected such that the system is schedulable without excessive
costs. Moreover, the hardware platform’s resources are typ-
ically shared among multiple software tasks. This results in
extra time delays, expressed as “Worst-Case Response Times’
(WRTs), which where not taken into account by the control
engineer.

From this example we conclude that relating view-specific
properties such as ‘computation and write time’ and ‘processor
speed’ may be difficult for engineers having a different view on
the system. Moreover, they are often not aware of the relations
between those view-specific properties and the ontological
properties such as control performance and schedulability.
By introducing an ontological framework, we make the re-
lations between ontological properties explicit. This enables
ontological reasoning such that view-specific properties can
be interrelated and consistency can be guaranteed.

III. FOUNDATIONS

Designing a CPS while keeping the views consistent is not
obvious. Moreover, each design process is slightly different
making consistency management of view-specific properties
process dependent. We believe that using a combination of
generic templates improves the usefulness of consistency
management among views while reducing time and effort. By
analysing current design processes, we experienced that they
combine three fundamental relationships: Multi-Semantics
(MS), Multi-Abstraction (MA) and Multi-View (MV).

The structure of each operation relies on the concepts
of linguistic and ontological (meta-)modelling. In a model-
driven-engineering context, a conformance relationship ex-
ist between a meta-model and a (possible infinite) set of
models which are instances of the meta-model. According
to Kiihne [11] this conformance relationship can be either
linguistic or ontological. Based on the work of Barroca et
al. [12], Figure 1 represents these conformance relationships.

We clarify the different types of conformance relationships
by means of the motivating example of Section II. A control
algorithm is modelled by a control engineer using formalisms
such as causal block diagrams, Statecharts, etc. Each model is
typed by a meta-model: there exists a conformance relation
between them. Since we are dealing with languages, this
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Fig. 1. Linguistic versus Ontological models

conformance relation is called linguistic and the meta-model
is called a Linguistic Type Model (LTM). Semantics is given
to a model by defining a Semantic Domain (SD) and a
semantic mapping function (//.]/]) which maps a model onto
its meaning, an element of the Semantic Domain. For example,
the control model of the power window can be transformed
to a Petri-Nets model, which linguistically conforms to the
Petri-Net meta-model, to obtain a reachability graph. A second
transformation is used to retrieve performance values such
as liveness and boundedness. We specify them as linguistic
properties since they are situated in the linguistic world. In that
sense, the view-specific properties ‘sample rate’ and ‘period
of tasks’ in Section II are linguistic as well. Subsequent
transformations will check if a linguistic property satisfy a
constraint using a function that returns a logical value (True
or False). The linguistic models are modelled with Closed
World Assumptions (CWA). This means that if a property is
not modelled, it is assumed False.

As shown in the motivating example, each view interprets
the requirements by means of some ontological properties
(e.g., Control Performance High Enough? and Schedulable?).
We use the question mark to make explicit that these are
ontological properties that need to be checked based on the
linguistic performance values. As a result, each model is typed
by one or more Ontological Type Models (OTM) representing
the implicit knowledge of the engineer. An OTM categorises
or classifies real-world entities based on properties (concepts).
These are logically related using some appropriate logic (e.g.,
description logic). Note that each ontology also conforms to
a Linguistic Type Model (LTM) because the representation of
the ontology must also be modelled using a language.

In our philosophy of ontological reasoning, ontologies and
linguistic models are related to each other through a satis-
faction relationship that must hold between their respective
properties. In other words, each linguistic property stemming
from a semantic domain can be linked to an ontological
property. This implies that linguistic properties stemming
from different semantic domains can be related to each other
through a common ontology or a set of ontologies. Note that
from an ontological viewpoint, no strict relation exists between
a model and an OTM. If a relation does not exist, either
within the ontology or with the linguistic type model, we do
not assume that it is False. We could just be unaware of the



relation. Ontologies are therefore modelled with Open World
Assumptions (OWA).

Based on these principles, the next subsections elaborate
on three fundamental relationship patterns: Multi-Semantics
(MS), Multi-Abstraction (MA), and Multi-View (MV). Fig-
ure 1 will serve as a basis to describe the structure of
these patterns, each of them exemplified using isolated design
operations on the power window example. By composing the
different patterns, Section IV demonstrates the usefulness for
the entire design process.

A. Multi-Semantics (MS)

Intent: The first pattern focusses on multiple semantic
domains, for a single engineering domain, to give meaning
to one specific view on the real-world system. It is useful
when different performance characteristics can be analysed
from a single model. For example, an electronic engineer
analyses both the power consumption and heat dissipation
of an electronic system-on-chip. Power consumption and heat
dissipation are analysed in different semantic domains, using
a different semantic mapping.

Structure: Figure 2 gives an overview of the relationships
between linguistic and ontological properties. In the first
phases of the design process, a written set of requirements
formulates the desired properties of the real world system for
a given context. Given these requirements, the engineer implic-
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Fig. 2. Linguistic and Ontological relationships for Multi-Semantics

itly reasons about ontological properties. The solid oval in the
Ontological World denotes the set of ontological properties
covered by the requirements. Examples of such ontological
properties include Safe?, Performance High Enough?, Schedu-
lable?, Deadlock Free?, etc.

As a first step in the design process, the engineer makes an
abstraction of the real-world system by means of a model. This
model strictly conforms to a Linguistic Type Model (LTM).
This is denoted by the conformance relation in Figure 2. By
mapping the model, using semantic a mapping function [/.]],
to a Semantic Domain (SD) a meaning is associated with
the model. The model thus obtained in the Semantic Domain
may allow analysis of some pertinent (linguistic) properties. In
this pattern, multiple semantic mappings to different semantic
domains are available to analyse different linguistic properties.
The result of these analyses are called performance values

(pv).

To check if a linguistic property satisfies a certain ontolog-
ical property, we test its related performance value using a
function that returns a logical value (True or False).

Reasoning about consistency: Different satisfaction rela-
tions can exist between the performance values and the ontol-
ogy: (I) the performance values must satisfy two orthogonal
properties. The two properties are orthogonal if they are not
ontologically related (even after transitive closure of inter-
mediate relationships). In this case, there are no consistency
issues. (II) both performance values must satisfy the same
ontological property. In this case, the model is consistent with
itself. Otherwise the model is (a) intra-model inconsistent, (b)
the semantic mappings are inconsistent, (c) different linguistic
properties are checked or (d) the model is infeasible. (III) there
are (transitive) relations between the ontological properties that
must be satisfied: Depending on the type and direction of the
relations, this will lead to category (I) or (ID).

Motivating Example: We clarify the pattern by means
of the example of Section II. The control model shown in
Figure 3 represents the model which linguistically conforms
to the meta-model of Simulink®. On the one hand, performing
a simulation gives semantics to the control model (e.g., in the
form of a simulation trace). From this, we obtain performance
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Fig. 3. Model of the power window controller and its ontology for Multi-
Semantics

values such as the time to reverse the movement of a window
when an object gets stuck between a closing window and the
frame. This is then checked against the Reaction Time High
Enough? property. On the other hand, a transformation to a
Petri Net representation can be made to verify the Deadlock
Free? property. Both ontological properties have a relation to
the property Safe?. The influence relation between ontological
properties is in this case: Safe? requires Deadlock Free? and
Reaction Time High Enough?. Deadlock Free? and Reaction
Time High Enough? are orthogonal.

B. Multi-Abstraction (MA)

Intent: In the multi-abstraction pattern, an abstraction-
refinement relation exists between the different models. This
implies that the abstract model’s performance values must
satisfy a subset of the ontological properties satisfied by the
(performance values of the) more refined model.

Structure: The structure of the pattern is shown in Figure 4.
As in every design process, a written set of requirements
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Fig. 4. Linguistic and Ontological relationships for Multi-Abstraction

formulates the real world system demands. Given this set
of requirements, each engineering domain creates a set of
ontological properties and relations between the ontologies
that the system should satisfy. Because there is only a sin-
gle view (engineering domain), there exists only one set
of ontological properties the system should satisfy. This is
denoted by the solid oval in the Ontological World. Similar to
the previous pattern, linguistic properties are tested for both
models by transforming them to a semantic domain. Again, the
performance values are tested, using a function, for satisfaction
with the ontological properties.

By definition of abstraction A, for an original model model,
only a subset of the ontological properties satisfied by the
performance values (in the Linguistic World) of the original
model have to be satisfied by the performance values of
the abstracted model A(model). For each such ontological

property op:
{A(model) = op} = {model |~ op}

If A(model) satisfies an ontological property, this must imply
that model satisfies that same property.

Reasoning about consistency: If the set of performance
values of the refined model do not satisfy all the properties
of the abstracted model, the two models are inconsistent.
This case is called vertical inconsistency in the literature. The
designer should mitigate the issue such that the refined model
satisfies all the properties of the abstract model. This could be
a redesign of the abstract or refined model.

Motivating Example: Figure 5 shows a refined model
of the power window controller and the set of ontological
properties it satisfies (via its performance values). Our refined
model still satisfies the ontologies discussed in the multi-
semantics example. However, it also satisfies a new ontological
property: Priority to Driver?. This property denotes that the
driver commands have priority over the commands of the
passenger. The model is still deadlock free and the reversal
of the window is still satisfied. Note that we also discovered
a new relation in the ontology. Safe? now also requires the
Priority to Driver? property to be satisfied. Our abstract model
however cannot be regarded as Safe? anymore because it has
no notion of priority. To keep the ontology consistent with the
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Fig. 5. Refined model of the power window controller and its ontology for
Multi-Abstraction

different design artefacts, the Safe? property should be moved
from the inner to the outer set of properties.

C. Multi-View (MV)

Intent: A final pattern operation focuses on multiple en-
gineering domains involved when designing a CPS, each of
them with a domain-specific view on the real-world system.
It is useful when the view-specific models are somehow
related to each other. For example, during the design of a
control algorithm its model is synthesized using a plant model
representing the physical elements of the real-world.

Structure: Similar to the previous patterns, Figure 6 de-
picts the structure of Multi-View design. Given the set of
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Fig. 6. Linguistic and Ontological relationships for Multi-View

requirements describing the behaviour of the real-world system
for a given context, each view (engineering domain) reasons
about certain linguistic properties and their related ontological
properties. These sets are represented by the dashed ovals in
Figure 6. However, since some of the requirements are shared
among the views, properties will concern both views which
implies that the ontological sets overlap. A semantic mapping
function transforms both models to a semantic domain to
test their linguistic properties. Using an appropriate evaluation
function, the performance values are evaluated for satisfaction
with the ontological properties.



Reasoning about consistency: Since the ontological prop-
erties at the intersection are related to the same requirement(s),
an ontological relationship between them exists by default.
Satisfaction between the performance values and the ontology
can occur in two ways: (I) if the performance value(s) satisfy
one or more of the properties in the intersection. (II) if
the performance value(s) satisfy a view-specific ontological
property which has a relation (after transitive closure) with
a property in the intersection. If for (I) and (II) the view-
specific performance values satisfy the property, the model
is consistent with itself. Otherwise, the model is inter-model
inconsistent. In the literature, this type of (in)consistency is
specified as horizontal (in)consistency. Consistency can be
guaranteed as well if performance value(s) satisfy orthogo-
nal properties such that no relation with a property of the
intersection exists.

Motivating Example: We illustrate this pattern operation
by using the motivating example of Section II. The upper
part of Figure 7 depicts how the power window controller is
connected to a plant model, while the lower part of Figure 7
shows relationships between ontological properties. As already

PowerWindow_control
»dntp window_up

speed [m/s] »
> obstacle peed [mis] 4 (]

Obstacle position [m] -  -¥{

»{drvDown

window_down

psqU . Scope2
psgUp end of detection range

overcurrent »up

> psgDown current [A]

»

O current sense - ADC value [+
’j » down D

st [T it

Scope3

»lend of range pinch

»current sense i

plant

PW_PSG_Front

—Pro

o5 — o,
Reaction=f(Traces) 5)999“‘6 Lowering? Clay Lowering=f(Traces)

DLF? -
| PO R >
‘\ | _e ) Efficiency? )

N P ,

o e , R

rity?2
~_® -

Fig. 7. Control and plant model of the power window and their ontologies
for Multi-View

shown in the previous patterns, the power window controller
is modelled using a statechart diagram and satisfies the onto-
logical properties discussed in the multi-abstraction example.
On the other hand, the plant model describes the physical
elements of the real-world (i.e., the motor and the window
mechanism) using causal-block diagrams. For this view, per-
formance values should satisfy the properties Efficiency High
Enough?, Lowering?, Safe? and Reaction Time High Enough?.
Since lowering the window ensures that a clamped object can
be released, a relation exists between Lowering? and Safe?.
From the example in the multi-semantics pattern, we have
shown how Safe? is related to Reaction Time High Enough?
for the control view. Since the properties Safe? and Reaction
Time High Enough? are part of the intersection, inter-model
consistency can be guaranteed.

IV. MOTIVATING EXAMPLE REVISITED

While demonstrating the fundamental design operations
in the previous section, it became clear no single pattern
can be used on its own in a complete design process. This
section revisits the motivating example of Section II using

the fundamental pattern operations, validating how consistency
can be guaranteed during the design of a CPS.

Figure 8 shows the ontologies related to the design of the
power window example. Centralized in the figure, one may
recognize the Multi-View pattern combined with the Multi-
Abstraction pattern which where demonstrated in Figure 7
and Figure 5 respectively. Both patterns are concurrently used
by the control and mechanical engineer. Note that we have
added the ontological property Performance High Enough? to
indicate a control engineer reasons about control performance
as well during his design. As already mentioned in Section II,

Schedulable=f(Traces)

Reaction=f(Traces)
g Py,

Fig. 8. Ontologies related to the design process of the power window

the third stakeholder (embedded engineer) is concerned about
the deployment of the control algorithm onto an ECU. There-
fore, he uses a hardware platform which is designed by the
same or an additional engineer keeping in mind ontological
properties such as Balanced Load? and Low Cost?. A relation
between them exists since more hardware resources (resulting
in a lower load) leads to a higher cost and vice versa. This is
symbolized by an ontology which has no (direct) relation with
the ontologies regarding the design of the control and plant
model. To this end, we say that both ontologies are orthogonal.

However, a consistency relationship between the software
(control algorithm) and the hardware (ECU) exists from the
ontological property Balanced Load? to Performance High
Enough? through the property Schedulable?. This latter prop-
erty refers to the implicit knowledge of the embedded engineer
who strives for a schedulable system in which the load for the
ECU and the control performance is balanced. Since control
performance has a consistency relationship with the property
Reaction Time High Enough?, an indirect link between the
schedulable system and the reaction time, to reverse the
movement of the window, exists. Due to this ontological
reasoning, a schedulable system implies a system to be safe.

One may notice that the pattern composition is not entirely
valid for this design process of our power window. Since the
Schedulable? property concerns both control and embedded
engineer it would have been better to reason upfront about the
performance values of timing.

V. DISCUSSION

The foundations and motivating example show how in-
consistencies arise because of the link between linguistic
and ontological properties and their interrelations. We discuss
some ramifications of reasoning in the ontological world for



the design of complex engineered systems and subsequent
tools that are needed.

Engineers use approximation in a similar way as abstrac-
tion. From an engineering perspective, we rarely deal with
true abstraction. Because of measurement errors, numerical
techniques, order reduction of our physical quantities and
phenomena, we usually approximate our performance value
in the linguistic domain. Our foundations deal with these
approximation by tuning the function that checks a linguis-
tic performance value against the ontological property. The
function has to take the tolerated error into account, and thus
works with a range of values. Reasoning about consistency
is in this case much harder. We need to take a distance
metric between the non-approximated performance value and
the approximated performance value into account to allow
for substitutability. This is considered future work for our
approach.

During the process of designing systems, engineers learn
about the system they are designing. It is therefore also
necessary to allow the ontology to be extended and updated.
This also has to reflect within the tool support. However,
the mechanisms of relating process, models and ontologies
requires tools to be usable by engineers. We will use the model
verse tool to enact the different modelling environments [13].
The model verse tool allows us to model languages, models,
processes, ontologies and the different dependencies between
the different artefacts. It also requires us to trace the different
properties back to the linguistic world such that efficient
consistency management can be done at the modelling level.
Of course, the use of an additional tool(set) might lead to
additional complexity. In certain development processes, how-
ever, ontologies can be reused, extended and/or merged which
reduces the additional complexity and enhances scalability.
Nonetheless, the feasibility of extending and merging two
or more ontologies will depend on their heterogeneity. Note
that the use of an incomplete ontology doesn’t necessary lead
to an inconsistent system. However, consistency can not be
guaranteed for those properties which are not linked to an
ontology.

Tool builders can take the ontological properties and re-
lations into account to support the engineers. An example
of this is the use of round-trip engineering in the design
process. With round-trip engineering, information about cer-
tain linguistic properties, that are only analysable at a less
abstract level, are reintroduced at the higher abstraction level,
essentially synchronising the two artefacts. However, we still
need to reason about which linguistic properties need to be
synchronised. Because of the link with ontologies, we can now
reason on the dependant ontological properties and trace them
to the linguistic properties. For example, the control models
can be extended with timing information as shown in [6], [14].
Both papers introduce extra blocks into the control model that
represent the delays of the computation time, scheduling time
and communication time. This allows the control engineer to
re-evaluate the control model for timing anomalies. By making
the information explicit, the number of design iterations could

be reduced.

By reasoning about the relations between the different
ontological properties, we can also reason about the design
process. An example of such a process restructuring can be
the parallelisation of two sequential design activities where
no ontological overlap is present. Tearing, partitioning and se-
quencing algorithms, introduced in design structure matrices,
can be used to guide the restructuring process [15].

The linguistic models linked to the ontologies also help us
in identifying activities that do not use a proper abstraction.
For example, in the power window, the schedulability prop-
erty influences the control performance property. However,
the evaluation of the schedulability property requires more
information that is only available after mapping the control
components to the hardware components. Restructuring these
activities into a real co-design process requires us to reason
about the timing information before starting the design of the
control and hardware models. Vertical design contracts allow
us to mend this. The ontologies and relation with the linguistic
world allows us to infer the view-specific properties that are
needed for a specific design contract. By making the relations
explicit, engineers can negotiate about the contracts with a
common understanding of how properties are linked.

VI. RELATED WORK

Introducing a common understanding between different
disciplines through languages has been a common research
theme in the mechatronic domain, for example in [16]. Close
to our contribution is the work of Hehenberger et al [17] who
introduce a domain ontology with structural elements of the
design and relations to reason about consistent structures of
the mechatronic device. In [18] OWL ontologies are used
to formally represent the design of a production system.
Combined with a SysML-based modelling approach, it enables
engineers to evaluate the compatibility of their domain-specific
models. Kovalenko et al [19] use an ontology-based approach
to support engineers in the automated detection of defects
between domain-specific models. Similar to our approach, it
enables engineers to use their own tools and view on the
system under design.

Persson et al [20] characterise model-based approaches used
in the design of Cyber-Physical Systems. The authors identify
consistency between the various views of the system as one of
the main challenges in the design of such complex systems.
This is due to relations between views, with respect to their
content (i.e., semantic relations), process and operations which
are not entirely exclusive to each other.

Van der Straeten et al [21] emphasise the importance of
proper characterisation of inconsistent model states, as a
foundational activity in model inconsistency management. The
authors propose a logic-based approach to address this activity,
although, as it often the case in the state-of-the-art, they focus
entirely on linguistic inconsistencies of pure software systems.

As an alternate approach, correspondence models have been
used extensively as a formal underpinning to inconsistency
characterisation. Qamar et al [22] propose explicit modelling



of dependencies among elements of various models in order
to support change propagation and consistency management.
Dévid et al [23] extend this framework by adapting it to
explicitly modelled design processes and augmenting the
reasoning by levels of precision of dependency links. As a
special case of correspondence modelling, pivot models are
often employed in mechatronics and CPS. Bhave et al [24]
use an “architectural base model” and a set of model trans-
formations for bi-directional mapping between various views
and the base model. SysML and EAST-ADL are frequent
choices for implementing pivot models, as presented in [25]
and [26]. Adourian et al [27] show a technique for maintaining
consistency between geometric and dynamic properties of
mechanical systems using triple graph grammars (TGG). Due
to the nature of TGGs, the approach does not only support
unidirectional synchronisation, but also bidirectional change
propagation and consequently, parallel evolution.

Characterisation of inconsistencies is a labor intensive task
when carried out manually. This is especially true when
ontological properties have to be taken into account. Herzig et
al [28] propose a probabilistic approach to identify semanti-
cally similar model elements over multiple models, in order to
relate them. Bayesian reasoning is used to infer likely semantic
overlaps, based on similarity metrics of various models and
model elements.

VII. CONCLUSIONS

This paper provides a foundation to facilitate communi-
cation among stakeholders having different concerns when
designing a Cyber-Physical-System. We isolated three design
operations and extended them with the notion of ontological
reasoning. By re-composing fundamental design operations,
we demonstrated how (in-)consistency can be managed. Fur-
thermore, reasoning in the ontological domain gives us insights
into the required content of contracts in Contract Based
Design.
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