
Opportunities in Robotic Process Automation
by and for Model-Driven Software Engineering

Istvan David
1
, Vasco Sousa

1
, and Eugene Syriani

1

DIRO, Université de Montréal, Canada
{firstname.lastname}@umontreal.ca

Abstract. Robotic Process Automation (RPA) offers a non-intrusive
approach to workflow automation by defining and operationalizing au-
tomation rules through the graphical user interfaces of engineering and
business tools. Thanks to its rapid development lifecycle, RPA has be-
come a core enabler in many of nowadays’ digital transformation efforts.
In this paper, we briefly review how some of the critical success fac-
tors of RPA endeavors can be supported by the mature techniques of
model-driven software engineering (MDSE); and how RPA can be used
to improve the usability of MDSE tools. By that, we intend to shed light
on the mutual benefits of RPA and MDSE and encourage researchers and
practitioners to explore the synergies of the two fields. To organize such
prospective efforts, we define a reference framework for integrating RPA
and MDSE, and provide pointers to state-of-the-art RPA frameworks.

Keywords: RPA · MDSE · User Interfaces · Process automation · Automation

1 Introduction

Robotic Process Automation (RPA) aims to alleviate the human workload by
automating workflows [1]. RPA offers a less intrusive alternative to traditional
workflow automation: the integration of the automation technology is approached
through the user interface of the software system. RPA bots emulate the user’s
behavior and interact with the information system through its user interface or
by connecting to APIs to drive client servers, mainframes, or HTML code. Be-
cause the system subject to automation does not have to be altered, RPA offers a
rapid development lifecycle and reduced development costs [2]. Often considered
a core enabler of digital transformation with a high return on investment, RPA
has been rapidly adopted by business-facing enterprises irrespective of their busi-
ness sectors [3]. In recent years, numerous vendors have made substantial efforts
to provide RPA platforms. Leading vendors like UiPath, Blue Prism, and Au-
tomation Anywhere offer enterprise-grade solutions in an integrated development
and management platform. At the same time, large-scale business information
system vendors, such as Microsoft, SAP, and IBM, have incorporated RPA into
their portfolios by pivoting from traditional functionalities, e.g., BI and CRM [4].

Author pre-print. Paper accepted for EMMSAD 2023.

The final publication appeared in LNBIP. DOI: 10.1007/978-3-031-34241-7 20.

https://doi.org/10.1007/978-3-031-34241-7_20


2 I. David et al.

Model-driven software engineering (MDSE) [5] is a paradigm in which soft-
ware, including its processes (such as RPA processes), is modeled before it gets
implemented. On the one hand, models provide means for formal analysis, some-
thing RPA processes could substantially benefit from. On the other hand, the
success of MDSE heavily relies on the usability of engineering tools. The us-
ability of MDSE tools, such as CAD tools and simulation software is far from
efficient as complex engineering activities often rely on repetitive tasks [6]. RPA
is a prime candidate to alleviate those issues. Despite these clear mutual benefits,
synergies between RPA and MDSE have not been mapped yet. In this paper,
we provide a brief overview of the relation between the two disciplines in both
directions: RPA by and for MDE, and define a reference framework to organize
future research and development on the topic.

State of the practice RPA frameworks. The latest (2022) Gartner Magic Quad-

rant report for RPA [7] lists four frameworks as clear market leaders. UiPath
1

offers features for governance, cloud-orchestrated RPA as a service, and intuitive
UX for non-technical developers. Its main strength is the product strategy, cen-
tered around an integrated low-code platform. Automation Anywhere

2
is a leader

in hyperautomation, i.e., combining RPA with machine learning (ML) capabil-
ities. The Automation 360 platform offers RPA as a service, process discovery,
analytics, and ML capabilities built on the TensorFlow framework that renders
Automation Anywhere’s screen capture accuracy superior to its competitors.
Microsoft Power Automate

3
leverages the unparalleled ecosystem provided by

the broader Microsoft Power Platform. Integration and orchestration capabili-
ties with Power BI for analytics, Process Advisor for process mining, and Power
Apps for low-code development are supported out-of-the-box. Blue Prism

4
offers

cloud-based RPA solutions, governance tools, and advanced automation lifecy-
cle management. With nearly 170,000 active RPA users, its customer ecosystem
one of Blue Prism’s strengths. Its industry-specific solutions and a wide array of
enterprise application connectors make Blue Prism a leader in the RPA market.

2 Opportunities in RPA by MDSE

Recent in-depth surveys have identified key challenges and success factors of
RPA endeavors [8,9]. Here, we outline three lines of research in MDSE (shown
in Fig. 1) that could substantially contribute to the success of RPA.

2.1 Domain-specific languages for RPA configuration

As reported by Plattfaut et. al [9], ensuring sufficient process knowledge as the
basis for automation and allowing the process owner to be part of the develop-
ment are critical success factors of sound RPA solutions. However, current RPA

1
https://www.uipath.com/

2
https://www.automationanywhere.com/

3
https://powerautomate.microsoft.com/en-ca/robotic-process-automation

4
https://www.blueprism.com/

https://www.uipath.com/
https://www.automationanywhere.com/
 https://powerautomate.microsoft.com/en-ca/robotic-process-automation
https://www.blueprism.com/


Opportunities in RPA by and for MDSE 3

A
P

I

RPA Platform

RPA engine

C
o

n
tr

o
l 

o
ve

r 
to

o
ls

Open-source

Proprietary

Availability of / need for programming expertiseLow High

Primary candidates for RPA

Secondary candidates for RPA

Secondary candidates for RPA

Moderate potential for RPA

Control engineering

Cyber-Physical Systems

Source code development

Low-code

Smart manufacturing

Simulation

Quality Assurance

Model transformations

Tool integration

Automotive

Business System Automation

Pair programming by cobots

❌

Domain-specific languages

Managing UI changes

Modeled interaction protocols

Configuration

❌

G
U

I

RPA Engine

Interaction 
patterns

RPA 
configuration

Feature 
specifications

2

3

4

5

D
SL

7

Domain 
expert

RPA expert

Modeling 
interactions

6

1

STMSS

M&S system
8

9

Fig. 1: Three potential contributions of MDSE to RPA

frameworks are shipped with mostly general-purpose process modeling languages
that offer little-to-no customizability. This limits the involvement of process own-
ers who typically possess highly domain-specific knowledge. In typical practical
settings, however, RPA experts act as translators between the process owner and
the RPA framework, and the success of capturing domain-specific workflows is
entirely dependent on their understanding and interpretation, resulting in sub-
stantial accidental complexity. Domain-specific languages (DSLs) [10] could re-
duce this accidental complexity, narrow the cognitive gap between the domain
expert and the RPA expert, and even allow expressing parts of the configura-
tion, integration requirements, and test scenarios [9] by the domain expert. The
modeling of multi-faceted RPA workflows might require an ensemble of modeling
languages. While graphical notations for workflows are intuitive, their limitations
are apparent when capturing complex structures. Multi-view Modeling [11] has
been successfully employed in such scenarios and could provide foundations for
modeling complex RPA configurations.

2.2 Explicitly modeled interaction protocols with APIs

Ensuring compliance with IT and security policies is another critical success
factor in RPA [9]. Establishing supporting tools that reach across organization
silos challenges the organizational embeddedness and audit of RPA processes.

One important technical facet is the interaction between the RPA process
and the various IT systems across the organization. Such orchestration tasks are
typically approached at the source code level that the RPA engine can use during
the execution of the main workflow. Relying on source code to integrate APIs is
problematic for two reasons. First, such an approach gives rise to unwanted ac-
cidental complexity. Inefficient source code can lead to the limited performance
of the RPA workflow, reduced quality, and bugs. The lack of proper exception
handling is a known shortcoming of RPA [8]. Second, certification of the RPA
workflow might be of particular interest in settings when critical infrastructure
is involved in the overall orchestration; or when the RPA workflow has to carry
out tasks in a mission-critical manner (e.g., in the development of a critical
cyber-physical system). Relying on source code substantially complicates any
analysis, verification, and certification of the overall RPA configuration. Explicit



4 I. David et al.

modeling of interaction protocols has been shown to be feasible and practical in
developing complex engineering toolchains [12] and can translate well to RPA
configurations. Statecharts and class diagrams have been suggested for modeling
service interactions in engineering workflows [13], allowing the analysis and sim-
ulation of various behavioral properties, such as time-outs, exception handling,
and parallelism. Finally, appropriately modeled interaction protocols enable the
end-to-end simulation and optimization of the underlying workflow [14].

2.3 Managing changes to user interfaces

Flexibility and maintainability of RPA solutions, and support for their continu-
ous evolution have been identified as additional success factors [8,9].

A severe shortcoming of RPA frameworks is their reliance on fixed user inter-
faces. Once an RPA configuration has been finalized, any change to the graphi-
cal user interface (GUI) might break it. This includes visible graphical elements
that have been added, changed, or moved and HTML code not visualized on
the GUI, such as changes to element identifiers or CSS classes. These limitations
make RPA configurations brittle and could lead to substantial maintenance costs
amidst unwanted vendor locking. Explicitly modeled GUI can significantly al-
leviate this problem [15]. Such approaches model the structure and behavior
of the editor and generate the specific implementation from the models [16].
This enables associating RPA rules with the model itself instead of the specific
GUI elements. Since models are manipulated through model transformations,
the traceability of changes is explicit, enabling controlled evolution of RPA con-
figurations based on the changes of the GUI.

3 Opportunities in RPA for MDSE

As much as RPA can benefit from MDSE, MDSE tools can benefit from RPA
techniques as well. Complex modeling activities, such as developing model trans-
formations and creating domain-specific languages, require repetitive tasks. Re-
usable and platform-specific workflow automation techniques, e.g., the Eclipse
Modeling Workflow Environment, have been proposed to alleviate these prob-
lems. However, such approaches assume (i) the availability of advanced program-
ming expertise and (ii) control over the business logic of the software tools at
hand, e.g., open-source software. In such cases, the impact of RPA is moderate,
as shown in Fig. 2. In the absence of programming skills and without control
over the internals of tools, RPA becomes a viable and convenient alternative.

Here, we briefly discuss the primary and secondary candidates for RPA and
provide example domains that rely heavily on model-driven techniques.

3.1 Primary candidates for RPA

MDSE settings in which non-programmer experts are working with proprietary
tools are the primary candidates for using RPA. Examples of such settings in-
clude traditional non-software engineering disciplines, such as control software



Opportunities in RPA by and for MDSE 5

A
P

I

RPA Platform

RPA engine

C
o

n
tr

o
l 

o
ve

r 
to

o
ls

Open-source

Proprietary

Availability of / need for programming expertiseLow High

Primary candidates for RPA

Secondary candidates for RPA

Secondary candidates for RPA

Moderate potential for RPA

Control engineering

Cyber-Physical Systems

Source code development

Low-code

Smart manufacturing

Simulation

Quality Assurance

Model transformations

Tool integration

Automotive

Business System Automation

Pair programming by cobots

❌

Domain-specific languages

Managing UI changes

Modeled interaction protocols

Configuration

❌

G
U

I

RPA Engine

Interaction 
patterns

RPA 
configuration

Feature 
specifications

2

3

4

5

D
SL

7

Domain 
expert

RPA expert

Modeling 
interactions

6

1

STMSS

M&S system
8

9

Fig. 2: Opportunities in using RPA for MDSE

and cyber-physical systems. While considered technical users, engineers in these
domains do not necessarily possess the skills to automate their work using ab-
stract process semantics. RPA can serve as a user-friendly alternative. Auto-
motive and smart manufacturing engineering sectors are also reportedly lagging
behind in digitalization [17], suggesting a high expected return on investment
of digital improvement efforts, such as RPA. Screen capturing and workflow au-
tomation tools, such as Selenium [18], have been widely used for quality assur-
ance purposes. However, these tools are limited to executing previously defined
test cases on a graphical user interface. RPA-supported quality assurance opens
up possibilities for automating the tester’s tasks as well, including the selection,
evaluation, and reporting of test cases, reconfiguring test cases, and improving
test cases by incorporating historical data through machine learning.

3.2 Secondary candidates for RPA

Shifting from proprietary to open-source tools (top-left quadrant) allows for
more control over the internals of the engineering tools, and enables automa-
tion through the business logic or back-end. Such settings limit the potential
of RPA. However, the potential lack of available programming expertise might
justify using RPA. Such cases can be observed in simulation disciplines where
experts often rely on open-source tools and algorithms and business systems
automation with non-technical users. Settings with proprietary tools but fea-
turing advanced programming expertise (bottom-right quadrant) are another
group of secondary candidates for RPA. RPA can successfully automate activi-
ties in developing low-code platforms with proprietary components and provide
a workflow-centric orchestration functionality for lightweight tools integration.
RPA can also emulate the human in pair programming settings, as advocated in
eXtreme Programming and related disciplines.



6 I. David et al.

4 Reference framework for integrating RPA and MDSE

We propose a conceptual reference framework to realize the opportunities in inte-
grating RPA and MDSE in both directions. As depicted in Fig. 3, the framework
lays the foundation for developing RPA solutions by and for MDSE. At a concep-
tual level, the framework relates these two directions between RPA and MDSE;
and relates them to conventional software automation. The framework aims to
aid RPA developers and tool providers to contextualize their efforts in terms of a
typical socio-technological modeling and simulation system (STMSS), in which
human and organizational factors must be considered during the system’s life-
cycle as well [19]. Furthermore, it aids MDSE developers and tool providers to
incorporate RPA into their continuous development efforts, possibly in a hybrid
approach combined with conventional software automation techniques.

A
P

I

RPA Platform

RPA engine

C
o

n
tr

o
l 

o
ve

r 
to

o
ls

Open-source

Proprietary

Availability of / need for programming expertiseLow High

Primary candidates for RPA

Secondary candidates for RPA

Secondary candidates for RPA

Moderate potential for RPA

Control engineering

Cyber-Physical Systems

Source code development

Low-code

Smart manufacturing

Simulation

Quality Assurance

Model transformations

Tool integration

Automotive

Business System Automation

Pair programming by cobots

❌

Domain-specific languages

Managing UI changes

Modeled interaction protocols

Configuration

❌

G
U

I

RPA Engine

Interaction 
patterns

RPA 
configuration

Feature 
specifications

2

3

4

5

D
SL

7

Domain 
expert

RPA expert

Modeling 
interactions

6

1

STMSS

M&S system
8

9

Data flow

Human input

System

Subsystem

Fig. 3: Conceptual reference framework for integrating RPA and MDSE. ➊–
➌ RPA for MDSE ➍–➎ Conventional Software Automation ➏–➒ RPA by MDSE

RPA for MDSE. RPA endeavors start with eliciting interaction patterns be-
tween the human modeler (i.e., the Domain expert) and the technical interfaces.
Typically, the RPA expert performs this activity, indicated ➊ in Fig. 3. These
interaction patterns are subsequently translated into the RPA configuration ➋.
This transformation spans the process definitions, API interactions, file I/O op-
erations, etc. Then, the RPA engine executes the process by interacting with the
API of the modeling tool and other tools in the tool chain ➌.

Conventional Software Automation. In a traditional software automation ap-
proach, the elicited interaction patterns serve as the inputs to Feature speci-
fications ➍. These feature specifications are subsequently implemented in the
STMSS to provide better automation ➎. RPA offers a non-intrusive and faster
development cycle for the automation of modeling and simulation tasks. In con-
trast, traditional software automation offers more robust solutions, thanks to the



Opportunities in RPA by and for MDSE 7

tighter integration with systems in the tool chain. The two approaches are best
used in combination. For example, RPA-based automation can serve as a tem-
porary patch until developments of conventional software automation catch up
with the changing requirements, or as the scaffolding for user-facing acceptance
testing before conventional software engineering developments commence.

RPA by MDSE. Through MDSE techniques and tools, the Domain expert can
directly express interaction patterns ➏. Such tools are, e.g., DSLs ➐, which pro-
vide high-level, concise mechanisms to specify RPA configurations. Both Domain
experts and RPA experts can use syntax-directed editing and mixed textual-
graphical editors for this purpose, possibly in a collaborative fashion [20]. State-
of-the-art modeling and simulation systems often provide APIs for automation
➑, e.g., via scripting. RPA solutions might require more sophisticated API sup-
port, e.g., RESTful web APIs with more complex interaction protocols between
the RPA engine and the STMSS while preserving scalability and portability.
Finally, to address the adaptability challenges of RPA, modeling and simulation
tool vendors might develop GUIs with explicitly modeled capabilities to provide
information to the RPA infrastructure for adaptation purposes ➒.

5 Conclusion

In this paper, we have outlined the opportunities in employing MDSE for the
improvement of RPA practices and employing RPA for improving MDSE tools.
We outlined three lines of research for prospective MDSE researchers in sup-
port of improving the outlooks of RPA endeavors, especially in the areas of
domain-specific languages, explicitly modeled interaction protocols, and mod-
eled user interfaces. To assess opportunities in applying RPA in MDSE tools,
we identified the openness of tools and the availability of programming exper-
tise as the principal dimensions of MDSE settings that determine the potential
impact of employing RPA. MDSE domains with proprietary tools or lacking
advanced programming expertise are the primary candidates to leverage RPA.
Such domains include automotive and CPS software engineering, various sim-
ulation domains, and low-code application development. Finally, we proposed
a reference framework that illustrates how domain-specific RPA configuration
languages, explicitly modeled API interactions, and generative techniques for
building robust GUIs, are elements of the MDSE toolbox that can contribute to
RPA immediately and improve its reliability and performance.

Future research should focus on the details of the outlined research directions,
and on conducting surveys to validate and detail the matrix of opportunities.
Adopters of RPA can use this paper as a guideline to better position their RPA
efforts. Developers can use the pointers of this paper to make better choices
when implementing new RPA features.



8 I. David et al.

References

1. S. Aguirre and A. Rodriguez, “Automation of a business process using robotic pro-
cess automation (RPA): A case study,” in Applied Computer Sciences in Engineer-
ing - 4th Workshop on Engineering Applications, WEA 2017, Colombia, September
27-29, 2017, Proceedings, ser. CCIS, vol. 742. Springer, 2017, pp. 65–71.

2. A. Asatiani and E. Penttinen, “Turning robotic process automation into commer-
cial success – case opuscapita,” Journal of Information Technology Teaching Cases,
vol. 6, no. 2, pp. 67–74, 2016.

3. J. Siderska, “Robotic process automation – A driver of digital transformation?”
Engineering Management in Production & Services, vol. 12, no. 2, pp. 21–31, 2020.

4. B. Schaffrik, “The Forrester Wave™: Robotic Process Automation, Q1 2021 – The
14 Providers That Matter Most And How They Stack Up,” 2021.

5. M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in
Practice, Second Edition. Morgan & Claypool Publishers, 2017.

6. M. Gamboa and E. Syriani, “Improving user productivity in modeling tools by
explicitly modeling workflows,” Softw. Syst. Model., vol. 18, pp. 2441–2463, 2019.

7. S. Ray et al., “Magic quadrant for robotic process automation,” Von Gartner:
https://www. gartner. com/doc/reprints, 2021.

8. R. Syed et al., “Robotic process automation: Contemporary themes and chal-
lenges,” Comput. Ind., vol. 115, p. 103162, 2020.

9. R. Plattfaut et al., “The critical success factors for robotic process automation,”
Comput. Ind., vol. 138, p. 103646, 2022.

10. M. Fowler, Domain-Specific Languages, ser. The Addison-Wesley signature series.
Addison-Wesley, 2011.

11. M. Verlage, “Multi-view modeling of software processes,” in European Workshop
on Software Process Technology. Springer, 1994, pp. 123–126.

12. M. Biehl, J. El-khoury, F. Loiret, and M. Törngren, “On the modeling and gen-
eration of service-oriented tool chains,” Softw. Syst. Model., vol. 13, no. 2, pp.
461–480, 2014.

13. S. Van Mierlo et al., “A multi-paradigm approach for modelling service interac-
tions in model-driven engineering processes,” in Proceedings of the Model-driven
Approaches for Simulation Engineering Symposium, SpringSim 2018, Baltimore,
MD, USA, April 15-18, 2018. ACM, 2018, pp. 6:1–6:12.

14. I. David, H. Vangheluwe, and Y. Van Tendeloo, “Translating engineering workflow
models to DEVS for performance evaluation,” in 2018 Winter Simulation Confer-
ence, WSC 2018, Sweden, December 9-12, 2018. IEEE, 2018, pp. 616–627.

15. V. Sousa, E. Syriani, and K. Fall, “Operationalizing the integration of user interac-
tion specifications in the synthesis of modeling editors,” in Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language Engineering, SLE
2019, Athens, Greece, October 20-22, 2019. ACM, 2019, pp. 42–54.

16. E. Syriani, D. Riegelhaupt, B. Barroca, and I. David, “Generation of custom tex-
tual model editors,” Modelling, vol. 2, no. 4, pp. 609–625, 2021.

17. J. Bughin, J. Manyika, and T. Catlin, “Twenty-five years of digitization: Ten in-
sights into how to play it right,” Boston: McKinsey Global Institute, 2019.

18. A. Bruns, A. Kornstädt, and D. Wichmann, “Web application tests with selenium,”
IEEE Softw., vol. 26, no. 5, pp. 88–91, 2009.

19. G. D. Baxter and I. Sommerville, “Socio-technical systems: From design methods
to systems engineering,” Interact. Comput., vol. 23, no. 1, pp. 4–17, 2011.

20. I. David and E. Syriani, “Real-time Collaborative Multi-Level Modeling by
Conflict-Free Replicated Data Types,” Software & Systems Modeling, 2022.


	Opportunities in Robotic Process Automation by and for Model-Driven Software Engineering

