
Viatra 3:

A Reactive Model Transformation Platform
?

Gábor Bergmann1, István Dávid3, Ábel Hegedüs2, Ákos Horváth1,2,
István Ráth1,2, Zoltán Ujhelyi2 and Dániel Varró1

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2.
{bergmann,varro}@mit.bme.hu

2 IncQuery Labs Ltd.
{hegedus, horvath, rath, ujhelyi}@incquerylabs.com

3 University of Antwerp (Modelling, Simulation and Design Lab)
Middelheimlaan 1, 2020 Antwerp, Belgium

istvan.david@uantwerpen.be

Abstract. Model-driven tools frequently rely on advanced technolo-
gies to support model queries, view maintenance, design rule valida-
tion, model transformations or design space exploration. Some of these
features are initiated explicitly by domain engineers (batch execution)
while others are executed automatically when certain trigger events are
detected (live execution). Unfortunately, their integration into a com-
plex industrial modeling environment is di�cult due to hidden interfer-
ence and unspeci�ed interaction between di�erent features. In this paper,
we present a reactive, event-driven model transformation platform over
EMF models, which captures tool features as model queries and trans-
formations, and provides a systematic, well-founded integration between
a variety of such tool features. Viatra 3 o�ers a family of internal DSLs
(i.e. dedicated libraries) to specify advanced tool features built on top
of existing languages like EMF-IncQuery and Xtend. Its main inno-
vation is a source incremental execution scheme built on the reactive
programming paradigm ssupported by an event-driven virtual machine.

Keywords: event-driven transformation, virtual machine, reactive pro-
gramming, source incremental transformations

1 Introduction

With the increasing adoption of model-driven engineering in critical systems
development, the increasing complexity of development processes and model-
ing artefacts poses new challenges for tool developers, especially in collaboration
and scalability. Nowadays, such challenges are typically addressed with dedicated
problem-speci�c solutions such as on-the-�y constraint evaluation engines [1,2]

? This work was partially supported by the MONDO (EU ICT-611125) project.



2 G. Bergmann et al.

(to improve the scalability of model validation), incremental model transforma-
tion tools [3] for scalable model synchronization, or design space exploration
tools [4] (to synthesize optimal models wrt some objectives). Some of these sce-
narios are initiated explicitly by domain engineers (batch execution) while others
are executed automatically upon certain trigger events (live execution).

Unfortunately, integrating di�erent technologies into a complex industrial
modeling environment is often di�cult and costly. This is due to hidden inter-
ference and unspeci�ed interaction between di�erent tool features. For instance,
a noti�cation originating from a model change may easily trigger con�icting ac-
tions in di�erent plugins. As a consequence, complex tool platforms such as the
Eclipse Modeling Framework (EMF) [5] are known to su�er from severe perfor-
mance and quality issues caused e.g. by the concurrent asynchronous execution
of various model indexing and validation mechanisms.

In this paper, we present a source incremental event-driven model transfor-

mation platform based on the reactive programming paradigm [6] to drive the
systematic, well-founded integration of tool features in various scenarios over
EMF models. The Viatra 3 Event-driven Virtual Machine (EVM) provides ba-
sic executional building blocks and primitives with clearly de�ned event-based
semantics. EVM also enables to combine various advanced tool features so that
complex interactions can be constructed easily and executed consistently.

Viatra 3 o�ers a family of internal DSLs (i.e. dedicated libraries and APIs)
built on top of existing languages to specify advanced tool features as model
queries and transformations. The EMF-IncQuery language is seamlessly inte-
grated to capture any conditions and constraints for a transformation. Further-
more, Java and Xtend-based internal DSLs (APIs) are used to specify transfor-
mations rules as well as complex interactions between di�erent tool features.

While Viatra 3 is designed to support a wide spectrum of tooling scenarios,
our case study focuses on a typical scenario including incremental deployment
to present challenges that arise in the interaction between batch and live model

transformations. The aim of the example is to illustrate to what an extent the
integration complexity is reduced by capturing and handling all tool features
and their interactions based on a uniform event-driven virtual machine.

The rest of the paper is structured as follows: �rst, we overview modeling
scenarios that motivate the development of the generalized virtual machine ar-
chitecture and introduce the case study in Sec. 2. Then we present our virtual
machine for reactive event-driven transformations (Sec. 3). Related work is dis-
cussed in Sec. 4 and Sec. 5 concludes the paper.

2 Motivating Example

In our motivating example4, we investigate batch and incremental model-to-
model transformations. The source domain describes a generic infrastructure
for cyber-physical systems (CPS) where applications (services) are dynamically

4 The complete source code, documentation and performance evaluation results are
available from https://github.com/IncQueryLabs/incquery-examples-cps

https://github.com/IncQueryLabs/incquery-examples-cps


Viatra 3: A Reactive Model Transformation Platform 3

(a) Hosts and Applications of the CPS. (b) Deployed Hosts and Applications.

Fig. 1: Source and target models

allocated to connected hosts. The target domain represents the system deploy-
ment con�guration with stateful applications deployed on hosts. Initially, we
aim to derive a deployment model from the CPS model, and then incremental
model transformations are used to propagate changes in the CPS model to the
deployment model and the traceability model.

Metamodel Due to space considerations, we present a limited fragment of the
metamodel in Figure 1, the description of the domain is adopted from [4]. The
simpli�ed CPS source model (Figure 1a) contains HostInstances and Application-
Instances, typed by HostTypes and ApplicationTypes, respectively. Application-
Instances are allocated to a HostInstance. In the Deployment model (Figure 1b),
DeploymentHosts and DeploymentApplications are derived from their instance
counterparts in the CPS model, respectively; and the hosts are associated with
the hosted applications. Finally, the mappings between the two domains are
persisted in a traceability model.

Scenarios In the original case study, we had to provide integrated tooling to
cover the following use cases:

1. Batch transformations are used to map HostInstances of a given HostType
to a DeploymentHost (the mapping is stored in an explicit trace model);

2. Live transformations are used to automatically map ApplicationInstances
to DeploymentApplications in an event-driven way (i.e. �red upon changes
to the source model to keep the target and trace models consistent).

3. On-the-�y validation is continuously performed (i.e. before and after
model synchronization) to ensure the correctness of the mapping.

Due to (data and control) dependencies, model synchronization phases should
only be initialized once the batch transformations have completely terminated
and when the (source) model is free of errors as indicated by validation results. In



4 G. Bergmann et al.

Fig. 2: Architecture of the EVM for model transformations

a traditional MDE toolchain, separate tool features would be used to describe the
various phases, requiring an external orchestrator to facilitate the coordination.
Complex features in real MDE tools (like model indexing or �le operations) add
further complexity to the integration of tool features. The current paper presents
how an event-driven virtual machine can reduce such complexity.

3 An Event-driven Virtual Machine (EVM)

Event-driven model transformations are executed continuously as reactions to
changes of the underlying model. To facilitate this sort of execution, we adopted
reactive programming principles. The core concept of reactive programming is
the event-driven behavior : components are connected to event sources and their
behavior is determined by the event instances observed on event streams. Com-
pared to sequential programming, the bene�ts of reactive programming are re-
markable especially in cases when continuous interaction with the environment
has to be maintained by the application based on external events without a priori
knowledge on their sequence [6].

Figure 2 presents the architecture of the Event-driven Virtual Machine (EVM),
the novel execution engine of the Viatra 3 platform5. Although this paper
demonstrates its use in model transformation scenarios, EVM is an engine for
executing reactive programs in general.

The speci�cation of an EVM program consists of two parts. First, the Rule
speci�cations are de�ned as Queries over a givenModel(s) and serve as a precon-
dition to the transformation. Second, the Actions to be executed are speci�ed,
which in this case are Model manipulations over the input models. Furthermore,
Execution schemas are de�ned in order to orchestrate the reactive behavior.

5 http://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/

EventDrivenVM contains the complete technical documentation.

http://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/EventDrivenVM
http://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/EventDrivenVM


Viatra 3: A Reactive Model Transformation Platform 5

Now we brie�y describe the behavior of other core components of Figure 2 in
the sequel.

3.1 Events

In batch transformation scenarios6, the sequence of executing actions associated
with a batch transformation is usually determined solely by the activations ini-
tiated from the transformation program. However, the core features of EVM
enable reactions to events. We distinguish between two kinds of events.

� Controlled events are initiated explicitly by the transformation program, and
involve the �ring of a selected rule with concrete values substituted for its
parameters. Thus a controlled event is characterized by a rule activation.

� Observed events are caused by external behavior, and the time of their occur-
rence may not be determined by the transformation program. Such observed
events include elementary model noti�cations and updated results of model
queries. However, more complex ways of detecting changes in the model (see
change patterns [7]) or aggregating temporal behavior of changes in the past
(see complex event processing [8]) are also possible over the EVM platform.

3.2 Activation Lifecycles

Listing 1 presents an event-driven transformation to keep already mapped Ap-

plicationInstances of the CPS model in sync with their DeploymentApplication
counterpart in the Deployment model.

The actions of event-driven transformations (in Lines 10-12, 14-24 and 26-28)
are associated with a speci�c events re�ecting the current state of the activation.
As opposed to simple batch transformations, these events suggest that in addi-
tion to executing an action on the appearance of an activation, updates and the
disappearance of the same activation might be also relevant from transformation
point of view and can also serve as triggers for executing actions.

Events re�ecting the current state of the activation constitute a transition
system called the Activation Lifecycle (Line 8), serving as the centerpiece of the
reactive paradigms supported by EVM. An Activation Lifecycle consists of of
di�erent (1) Phases (see Figure 2) an Activation can be associated with during
its existence; and (2) event-triggered transitions between the Phases. Optionally,
(3) a transition may be associated with a Job, which represents the executable
Actions of an input rule speci�cation. Figure 3 presents two typical Activation
Lifecycles.

Figure 3a illustrates the lifecycle of an event-driven transformation rule.
Apart from the initial phase, we distinguish between enabled and disabled phases
depending on the presence or absence of a Fire transition. Event-driven trans-
formations de�ne executable actions for enabled states of the lifecycle. If an

6 https://github.com/IncQueryLabs/incquery-examples-cps/wiki/

Alternative-transformation-methods#Batch

https://github.com/IncQueryLabs/incquery-examples-cps/wiki/Alternative-transformation-methods#Batch
https://github.com/IncQueryLabs/incquery-examples-cps/wiki/Alternative-transformation-methods#Batch


6 G. Bergmann et al.

Listing 1 Event-driven transformation rule for maintaining ApplicationIn-

stances

1 //finds every every transformed and allocated deploymentApp

2 pattern mappedApplicationInstance(
3 appInstance , deploymentApp , hostInstance , deploymentHost) {...}
4 ------------------------------------------------------------------------------
5 CPSToDeployment mapping // reference to the mapping model

6 val applicationUpdateRule = createRule (). name("application update")
7 .precondition(mappedApplicationInstance) //a graph pattern as precondition

8 .lifeCycle(ActivationLifecycles.default)
9 // action to be executed when a pattern match appears

10 .action(ActivationStates.APPEARED) [
11 debug("Starting monitoring mapped application with ID: " + appInstance.id)
12 ]
13 // action to be executed when a pattern match gets updated

14 .action(ActivationStates.UPDATED) [
15 debug("Updating application with ID: " + appInstance.id)
16 //case 1: ID changed

17 if (appInstance.id != deploymentApp.id) {
18 deploymentApp.set(id , appInstance.id)
19 }
20 //case 2: host changed

21 if (! deploymentHost.applications.contains(deploymentApp )) {
22 deploymentHost.set(deploymentHost_Applications , deploymentApp)
23 }
24 ]
25 // action to be executed when a pattern match disappears

26 .action(ActivationStates.DISAPPEARED) [
27 debug("Stopped monitoring mapped application with ID: " + appInstance.id)
28 ].build

activation enters that speci�c phase, it may �re and upon the transition, the
associated job (de�ned by the action in the transformation rule) gets executed.

For example, the �rst time a match of the MappedApplicationInstance model
query is found, an activation of the rule will occur in the APPEARED state. If
the EVM �res that activation, the appearJob will be executed.

To unify the behavior of model transformations over the EVM platform, both
event-driven and batch transformations are executed as reactive programs (using
the the activation lifecycle of Figure 3b for the batch case). The enabled phases
of an activation lifecycle represent outstanding reactions to observed events, but
the �ring of the actual reactive jobs is tied to controlled events.

3.3 Scheduler

External observed events in�uence activation phases according to the lifecycle,
and the active phase selects the job to be executed (if any). However, it is the
chosen Scheduler component that determines when EVM can �re these controlled
events (i.e. execute the jobs).

Practical examples for the scheduling event include (1) the signal of the
query engine indicating that the updating of query results after an elementary
model manipulation has concluded; (2) the successful commit of a model editing
transaction; or (3) some combination of the former events with a timer. The
choice of scheduling event has to take into account the following factors:



Viatra 3: A Reactive Model Transformation Platform 7

Phases&
&

Disabled)

Appear)
Update)

Fire)
Disappear)

Ini2al)

Enabled)

Transi+ons&

(a) Event-driven Transformation (b) Batch trans-
formation

Fig. 3: Typical rule lifecycles

� The rules may require a certain level of consistency in the model, e.g. some
rules are ine�cient to execute while a large-scale transaction is incomplete;

� Otherwise, the rules should be executed as soon as possible thus their e�ects
are observed by the user or by further transformation steps.

Event driven transformation rules may also explicitly invoke other rules,
which is a direct rule dependency. However, indirect rule dependency may also
exist when model manipulation in a job causes observed changes which, in turn,
enable activations and trigger the scheduler.

3.4 Agenda

The Agenda stores the current phases (states) of all activations of each rule. Its
role is dual: it helps maintain the phase of activations in reaction to events, and
it supplies the set of rule activations being in an enabled phase, i.e. activations
that can be �red. The core operation of EVM is intrinsically tied to the agenda:
in case of an observed or controlled event, the rule activation corresponding to
the speci�c event will change phase according to the transition in the lifecycle
model de�ned for the rule that starts at the current phase and is labeled with
the event type token. Afterwards, if there is a job associated with the transition,
it is invoked with the activation providing the input parameters.

As the set of all possible activations is practically in�nite (as each rule pa-
rameter may point to any memory address), the implementation considers only
those activations that are currently not in their initial phase. This makes the
agenda �nitely representable, since a �nite number of events may have moved
only a �nite number of activations out of their initial phases.

3.5 Con�ict resolution

At any point in time, the rules (or a selected subset of rules in a common case
of batch transformations) might have multiple activations in an enabled state,
which is called a con�ict. If the transformation is to invoke a rule �ring, a single
enabled activation has to be selected from the con�icting ones (mainly due to



8 G. Bergmann et al.

Algorithm 1 The execution algorithm of the case study
PROCEDURE Agenda.processEvent(Event e) . processes a single event
1: for all RuleInstance ri if triggered by event e do

2: act := ri.activationForEvent(e) . creates activation if unstored (i.e. in the initial phase)
3: agenda.updatePhase(act, e) . updates activation based on event e
4: end for

PROCEDURE Scheduler.main() . drives the reaction to events
5: Agenda.executeActivations() . execute enabled activation based on the CR

PROCEDURE Agenda.executeActivations() . executes all activations
6: while (Con�ictResolver.hasNextActivation()) do
7: act := Con�ictResolver.nextActivation() . gets next activation
8: Executor.�re(act) . �res the activation
9: end while

the single threaded manipulation of EMF models). This selection can be done
manually by the transformation code, but EVM also provides an automated
mechanism that delegates this decision to a user-speci�ed Con�ict Resolver (see
Figure 2). Built-in con�ict resolvers include FIFO, LIFO, fair random choice, rule
priority (with a secondary con�ict resolver within priority levels), interactive
choice (e.g. on the user interface), but it is possible to implement arbitrary
con�ict resolution strategies.

3.6 Execution

The execution of event-driven transformations is handled by the EVM. We
present the process by walking through the execution Algorithm 1 using an
example scenario. The scenario presents an update of ApplicationInstance a1

where its associated HostInstance is replaced.

Step 1 The HostInstance reference of ApplicationInstance a1 is removed. The
matched precondition of the rule generates an updates event.

Step 2 In the EVM, the Agenda processes the event. The activation of the
transformation rule is updated (Line 3).

Step 3 When the noti�cations are processed, the Scheduler initiates the rule
execution by notifying the Agenda (Line 5). The Agenda attempts to acquire
the next transformation activation from the Con�ictResolver (Line 7) and
�re it (Line 8).

4 Related work

Virtual machines for model queries and transformations. The ATL virtual ma-
chine was the �rst to provide execution primitives on which di�erent transforma-
tion languages (like, ATL and QVT) can be executed. Recently introduced new
features include lazy evaluation [9], incremental [10] combined into the Reac-
tiveATL transformation engine. As a main conceptual di�erence, this approach
is target incremental, i.e. a transformation is executed only when its result is
needed � unlike our source incremental virtual machine.



Viatra 3: A Reactive Model Transformation Platform 9

EMFTVM [11] is an execution engine for EMF models that provides both a
very low-level language and execution primitives to have a more simple compiler
architecture. Similarly, T-Core [12] is based on the same concept for providing an
execution engine for graph transformation rules. Their main advantage is that
they provide better performance for the low-level primitives and optimization
capabilities in case of translation from high-level languages. Model transforma-
tion chains [13] aim at composing di�erent transformations proposing a loosely
coupled integration between existing transformation steps.

Our virtual machine is unique in combining di�erent best practices: (1) it pro-
vides tight integration between many heterogeneous tool features (queries, trans-
formations, validation, exploration, etc.) built upon (2) a source-incremental re-
active event-driven paradigm to provide well-founded integration.

Event-driven techniques and model transformations. Event-driven techniques
have been used in many �elds. In relational database management systems,
even the concept of triggers can be considered as simple operations whose ex-
ecution is initiated by events, which have been utilized for event-driven model
transformation purposes previously [14]. These approaches provided the basics
for event-driven model transformation techniques.

Our approach presented in the this paper can be regarded as a foundation
for previous work on incremental well-formedness validation [1], live and change-
driven transformations [7], design space exploration [4] and streaming model
transformations [8]. Despite not having been published previously, EVM has been
a hidden component of EMF-IncQuery since 2013, and has already proven to
be an e�cient execution platform for incremental transformations [15].

5 Conclusion

In this paper, we have proposed a novel execution infrastructure for model pro-
cessing chains, based on an event-driven reactive virtual machine architecture.
Its primary design principle is �exibility : through the customizability of rules
and execution strategies, it can provide the foundations to a wide range of ap-
plications, it supports both stateless and stateful systems, and its internal DSLs
(based on Xtend and Java) provide a uniform integration platform for complex
model processing programs. As we have shown through the case study, Viatra
3 is capable of unifying several previously separated advanced modeling aspects
into an integrated system, which can address challenging issues such con�ict
management.

As a main direction for future development, we plan to externalize the DSLs
into a family of extensible, yet easy-to-use languages.

Acknowledgements. The authors wish to thank all the contributors of the Via-
tra 3 and EMF-IncQuery projects, in particular Tamás Szabó.



10 G. Bergmann et al.

References

1. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming 98 (02/2015 2015)

2. Willink, E.D.: An extensible OCL virtual machine and code generator. In: Pro-
ceedings of the 12th Workshop on OCL and Textual Modelling, ACM (2012) 13�18

3. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling (SoSyM) 8(1) (3 2009)

4. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Hegedüs, Á., Horváth, Á., De-
breceni, C.: Multi-objective optimization in rule-based design space exploration.
In: 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2014), Vasteras, Sweden, IEEE (2014) 289�300

5. The Eclipse Project: Eclipse Modeling Framework. Accessed: 2015-03-27.
6. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A

survey on reactive programming. ACM Computing Surveys (2012)
7. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-

tions. Software and Systems Modeling 11 (2012) 431�461
8. Dávid, I., Ráth, I., Varró, D.: Streaming model transformations by complex event

processing. In: ACM/IEEE 17th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2014, Valencia, Spain, Springer (2014)

9. Tisi, M., Martínez, S., Jouault, F., Cabot, J.: Lazy execution of model-to-model
transformations. In Whittle, J., Clark, T., Kühne, T., eds.: Model Driven Engineer-
ing Languages and Systems. Volume 6981 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2011) 32�46

10. Jouault, F., Tisi, M.: Towards incremental execution of atl transformations. In:
Proceedings of the Third International Conference on Theory and Practice of
Model Transformations. ICMT'10, Berlin, Heidelberg, Springer-Verlag (2010) 123�
137

11. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In: 14th Int. Conf. on Model Driven
Engineering Languages and Systems. MODELS'11, Springer-Verlag (2011) 623�637

12. Syriani, E., Vangheluwe, H., LaShomb, B.: T-core: a framework for custom-built
model transformation engines. Software and Systems Modeling (2013) 1�29

13. Yie, A., Casallas, R., Deridder, D., Wagelaar, D.: Realizing model transformation
chain interoperability. Software and System Modeling 11(1) (2012) 55�75

14. Bergmann, G., Horváth, D., Horváth, Á.: Applying incremental graph transfor-
mation to existing models in relational databases. In: 6th Int. Conf. on Graph
Transformation. Volume 7562 of LNCS., Springer (2012) 371�385

15. van Pinxten, J., Basten, T.: Motrusca: Interactive model transformation use case
repository. In: 7th York Doct. Symp. on Comp. Sci. & Electronics. (2014) 57


	Viatra 3: A Reactive Model Transformation Platform
	Introduction
	Motivating Example
	An Event-driven Virtual Machine (EVM)
	Events
	Activation Lifecycles
	Scheduler
	Agenda
	Conflict resolution
	Execution

	Related work
	Conclusion


