Engineering mobile apps for disaster
management — the case of COVID-19 apps in
the Google Play Store

Authors
e Ivano Malavolta (Vrije Universiteit Amsterdam, the Netherlands)

e Taher A. Ghaleb (School of Electrical Engineering and Computer Science, University of
Ottawa, Canada)

e Istvan David (Université de Montréal, Canada; Vrije Universiteit Amsterdam, the
Netherlands)

e Jasper van Rooijen (University of Twente, the Netherlands)

e Marielle Stoelinga (University of Twente and Radboud University, the Netherlands)

ABSTRACT

Several mobile apps have been released to the public in response to the COVID-19 pandemic. The
majority of these apps share a similar socio-technological context: they are developed under a tight
schedule, with immense social and political pressure, e.g., concerning privacy and security. This
pressure can lead to malfunctions with serious consequences, considering the mission-critical
nature of these apps.

In this paper, we assess the severity of these factors by comparing 61 COVID-19 apps with 61
traditional (non-COVID-19) health and medical apps on the Android platform. Our analysis reveals
several noteworthy differences, such as restrictions on operating system versions, and significantly
more software bugs and code smells in COVID apps, directly threatening the utility of the app, e.g.
in terms of reach, reliability, and performance.

1. Introduction

The COVID-19 pandemic is being fought with a wide variety of measures [13], including health
measures (e.g., disinfection and vaccination) and social measures (e.g., lockdowns and
quarantines), in addition to technological measures. In the latter category, several mobile
applications have been released to the public in response to the COVID-19 pandemic. Apps
belonging to this category (referred to as COVID-19 apps) include: contact tracing apps, apps to
inform people about facts, treatments, and procedures related to the pandemic, apps supporting
the COVID-19 response, containment, or research, efforts, and apps providing additional services
to respond to COVID-19 [1].

The development of COVID-19 apps is hindered by various challenges. Key concerns are the trust
and the wide adoption of these apps. For example, contact tracing apps are only useful if they are
widely adopted: to get a relevant overview of the spreading of COVID, enough people must install
tracing apps on their mobile phones. In particular, the correct functioning of the apps is critical:
identifying too few COVID-19 contacts, or erroneous contacts would defeat the whole purpose of
the app. Furthermore, security and privacy are major challenges in COVID-19 apps, as they record
very privacy-sensitive medical information, as well as location data [2]. These challenges, in turn,
threaten the adoption of COVID-19 apps, and thereby their effectiveness. Finally, the urgency of
the pandemic requires immediate solutions, which lead to time pressure that can affect the overall
technical quality.
In this article, we provide (i) an overview of the differences between COVID-19 apps and
non-COVID-19 apps on the Android platform in terms of their platform compatibility, requested
privacy-related permissions, used software components, and presence of bugs/code smells; and
(i) two main concerns and six useful suggestions for app developers working on projects
facing similar challenges to those of COVID-19 apps, i.e., a tight schedule, immense social and
political pressure, and with potentially severe consequences in case of malfunctions (e.g., apps
responding to natural disasters).
In this study, we focus on Android apps since, as of today, Android covers 72.83% of the market
share. In addition, the availability of open-source tools for analyzing Android apps and the ease in
which apps can be mined from the Google Play store make the whole study replicable and
independently verifiable.
Our analysis reveals two main concerns that app developers should address when developing
disaster-management apps and six suggestions for app development:

e Concern A: Facilitate user onboarding in the context of disaster situations.

o Suggestion A1: keep the required minimum SDK version low, to include as many
users as possible, even those with older devices.

o Suggestion A2: keep the set of requested permissions as tight as possible to avoid
any suspicion of privacy concerns and lower the barrier for users to install the app.

o Suggestion A3: clearly declare the permissions required and data collected by the
app to be fully transparent with both prospective and already-onboarded users.

e Concern B: Retain users in the context of disaster situations.

o Suggestion B1: allow disabling/enabling of privacy-related permissions from the
app itself, rather than at system level, to ease privacy management for users.

o Suggestion B2: comply with guidelines and norms about component structure to (i)
avoid user disengagement due to the lack of trust and (ii) minimize the entry barriers
for newly joining developers.

o Suggestion B3: increase the frequency of releases to deliver bug fixes with high
priority and urgency to maintain the trust of users.

These results are gained by a thorough comparison of 61 publicly available COVID-19 apps, and
61 traditional (non-COVID-19) apps from the health and medical domains. We analyze each app
with respect to four key characteristics:

Reach: The platform compatibility of the apps.

Privacy: the number, type, and protection level of the requested user permissions.
Software components: the number and type of software components.

Software quality: bugs, code smells, and code duplication.

Paper organization. In Section 2, we explain the experimental setup. Sections 3 through 6
discuss our findings and the suggestions for developers. Section 7 concludes the paper.

2. Experimental setup

We built on an open-source tool (https://github.com/iivanoo/covid-apps-observer) that automatically
collected Android mobile apps that are made available to the public of 19 countries. For each
country, the tool queried the Google Play Store to search for all mobile apps that had the keyword
‘covid’ and collected all mobile apps appearing in the search results of each country. We note that
the Google Play Store enforces strict requirements on the apps claiming to be responding to
COVID-19 [1] and filters its search results accordingly. The search strategy of our tool made sure
that only officially-verified COVID-19 apps are analyzed in this study, i.e., apps that are (i) either
published, commissioned, or directly endorsed by an official government entity or (ii) successfully
passing a thorough review process performed by the maintainers of the Google Play store
(https://support.google.com/googleplay/android-developer/answer/98897127hl=en).

Our search strategy resulted in a total of 67 COVID-19 mobile apps across 19 countries. After that,
we collected non-COVID-19 health/medical mobile apps to perform a comparative analysis with the
COVID-19 apps. We chose medical/health apps to carry out a reasonably fair comparison. Indeed,
in the Google Play store, medical/health apps belong to those categories that are the closest to
COVID-19, reasonably isolating the effect that COVID-19 could have on their development
process. Specifically, for each COVID-19 app, we collected an app that is (a) under the ‘Medical’ or
‘Health & Fitness’ app category and (b) available in the same country(ies). As a result, we obtained
61 non-COVID-19 mobile apps. An analysis for each of the COVID-19 and non-COVID-19 apps
was carried out in the following steps.

1. We extracted the metadata of the apps (e.g., title, description, size, and date of release)

using a Google Play scraper.

2. We downloaded the Android Package (APK) of each app.

3. We extracted information on four key characteristics with the following tools:

a. Reach: We extracted the AndroidManifest.xml file of the apps to identify the Android
version(s) the apps support.

b. Privacy: We extracted the user permissions requested by the apps using
Androguard (https://github.com/androguard).

c. Software components: We extracted the main components of the apps, i.e.,
activities, services, broadcast receivers, and content providers using Androwarn
(https://github.com/maaaaz/androwarn).

d. Software quality: We extracted quality metrics of the software within the apps using
SonarQube (https://github.com/SonarSource/sonarqube).

4. We explored and analyzed the results via a combination of descriptive statistics, bar plots,
and boxplots.
For independent replication and verification, the raw data collected for this study and the source
code used to analyze it are publicly available on a dedicated GitHub repository
(https://qgithub.com/S2-group/covid-apps-analysis).

SIDEBAR - Other research studies on COVID-19 apps

The prominence of contact tracing apps (CTAs) gave rise to a novel class of challenges. A
substantial amount of work has been dedicated to mapping these challenges from technological,
societal and political standpoints.

https://github.com/iivanoo/covid-apps-observer
https://support.google.com/googleplay/android-developer/answer/9889712?hl=en
https://github.com/S2-group/covid-apps-analysis

Rahman and Farhana [1] identify the user interfaces and the data management layers of apps
as the main hotspots of technical issues. Bug reports related to these components accounted for
more than 60% of the bugs in their assessment of 129 COVID-19 CTAs. In general, the main
non-functional concerns for CTAs have been security and privacy [2, 3, 4, 5]. Additionally, more
general characteristics have been discussed by Sambhi et al. [6].

Much research has been done on the econo-political context of CTAs. Bano et al. [7]
demonstrate that, despite the sound technological underpinnings and the employment of the best
practices of software engineering, political factors and individual behavior patterns often prevent
the success of CTAs. Wang et al. point out that technical and societal issues equally prevail in
government-backed applications as well [8]. Blasimme and Vayena [9] suggest that adaptive
governance models enabling social learning can alleviate these issues and foster the usage of
CTAs.

[1] Rahman et al. "An Exploratory Characterization of Bugs in COVID-19 Software Projects."
arXiv preprint arXiv:2006.00586 (2020).

[2] Hatamian et al. “A privacy and security analysis of early-deployed COVID-19 contact tracing
Android apps.” Empir Software Eng 26, 36 (2021).

[3] Sun et al. “Vetting security and privacy of global covid-19 contact tracing applications.”
arXiv:2006.10933

[4] Raskar et al. "Apps gone rogue: Maintaining personal privacy in an epidemic.”
arXiv:2003.08567 (2020).

[5] Cho et al. "Contact tracing mobile apps for COVID-19: Privacy considerations and related
trade-offs." arXiv preprint arXiv:2003.11511 (2020).

[6] Samhi et al. "A First Look at Android Applications in Google Play related to Covid-19.”
Empirical Software Engineering 26: 57 (2021).

[7] Bano et al. "Requirements, Politics, or Individualism: What Drives the Success of COVID-19
Contact-Tracing Apps?." IEEE Software 38.1 (2020): 7-12.

[8] Wang et al. “Market-level Analysis of Government-backed COVID-19 Contact Tracing Apps.”
Int. Conf. on Automated Software Engineering - Workshops. (2020)

[9] Blasimme and Vayena. "What's next for COVID apps? Governance and oversight." Science
370.6518 (2020): 760-762.

3. Characteristic 1: Reach

Motivation. Android developers have to explicitly declare the specific versions of the Android
platform used by their apps so that (i) the Google Play Store can show to users only the apps that
are compatible with their devices and (ii) only compatible apps can be installed on the device of the
user. Doing so prevents runtime issues due to the mismatch between the system calls made by the
app and the running operating system, depending on the features an app provides.

As of November 2020, there is still a non-negligible portion of the Android user base who is running
old versions of Android, such as Android Lollipop (6.1%, released in 2014) and Android KitKat
(2.5%, released in 2013). Given their social and safety function, it is fundamental that
disaster-management apps are compatible with as many as Android smartphones.

Analysis method. We targeted the Android Manifest file and extracted the contents of the Android
SDK versions used by each app. Specifically, developers specify the Android version by means of
an API level integer that maps one-to-one to a specific version of the Android OS and ranges from

1 (corresponding to the first release of Android) to 30 (corresponding to Android 11). We extracted
the following three relevant SDK versions declared in each app:

e Minimum Android SDK version: the minimum API Level required for the app to run. A
smartphone prevents the installation of apps with a minimum SDK version higher than the
Android version running onboard.

Maximum Android SDK version: the opposite behavior of the minimum Android SDK version.
Target Android SDK version: the API level that the developer used to test the app. If the
smartphone of the user is running a different version of Android, then such differences are
compensated at runtime by the OS.
The larger the difference between the minimum and maximum Android SDK versions of an app,
the wider the audience the app can reach. For example, old phones support only lower Android
versions (e.g., SDK version 15). Hence, an app with a higher minimum supported Android version
cannot be used by users with such old phones, which leads to accessibility problems. Android
guidelines suggest to have the target Android SDK version as high as possible to ensure that
apps behave and look as good as possible on the most recent Android devices.

Results of the analysis. First of all, it is interesting to observe that none of the COVID-19 apps
define the maximum Android SDK version. This finding is promising, since those apps will be
compatible with all future releases of the Android platform.

However, the data looks different when considering the minimum Android SDK version. As shown
in Figure 1(a), the median value for non-COVID-19 apps is 19 (Android 4.4, released in 2013),
whereas the median value for COVID-19 apps is 21 (Android 5.0, released in 2014).

Although COVID-19 apps are compatible with more Android devices, more than half of the apps
are compatible only with Android versions released from 2014. In general, for Android developers,
a higher minimum Android SDK version means having fewer issues at run-time and fewer corner
cases to manage at development time.

The situation about the target Android SDK version looks much better (see Figure 1(b)), since
COVID-19 apps have been tested with the latest Android releases (SDK version 28 and 29). This
result is not surprising, since the need for developing COVID-19 apps only arose at the beginning
of the pandemic (February-March 2020), where Android 10 was already released (SDK version
29).

Suggestions for developers. The results about the maximum and target SDK versions are
positive and do not raise any warning. However, the data about the minimum SDK version is, in our
opinion, worrisome. Given that half of COVID-19 apps have a minimum target SDK version equal
to Android 5.0 and that the number of users having an Android version earlier than Android 5.0 is
3.2% of the total number of Android users (about 2.8 billion), there are 89.6 million users who
cannot even install a COVID-19 app today. Besides, there are several apps whose minimum
Android SDK version is higher than the API level of 21, whereas some apps that require an API
level of 26, which corresponds to Android 8.0, released only in 2017.

Based on these results, we suggest Android developers strive towards expanding the target user
base of their disaster-management apps by lowering their required minimum SDK version to
include those users having older devices (Suggestion A1). Android versions that are running on
older or second-hand devices are more likely to be used by people with low-income and the elders,
which are sadly the population segments having higher rates of COVID-19 infection and mortality

[6].

+
~

a

4

Minimum Android SDK version

Target Android SDK version
=
=

~

[

Ga
- - - -o{

ORNWEUNO NGO~

Frequency (% of apps)

3 11 3
] 1]
E Androig versions — Z; Android versions -
2 5 2
] 27
] 4]
1 3]
1 1 1
coviD non-COVID 0 CD{IID nun-C‘DVID
(a) Minimum SDK versions (b) Target SDK versions
38 v
374 *
3 . 100 covip
g;« : Non-COVID
32- . 90 4
21
3]
gs« — . 80
%]
251 % 704
244 %
234
255 ©
e _ 5 601
£35] g
2184 > 504
.~ o =)
316 5
EZ & 40+
1] -
17 30 1
o]
7 20 1
g:
i 10
1 1 1
0 CoviD Non-COVID 0
\A(’» é\(% de g\\j \g:«p $(,9 \l\d’, \l\(_S’,P~ \O"\ ??6?'
Apps @:«f ?\‘(\\N ‘(SM (c <O
o ?@o ’o\‘“ ?\“Q’V\W
@6? qﬁ? O@"’C’t?‘?’cc, @6
NS «& < ‘\(,P\f K "\
P~
Permission
(c) Permissions requested per app (d) Top ten requested permissions
25
100 - covib =1 CovID
Non-COVID ¢ 1 Non-COVID
90 1 .
20)
80 - X
)
¢
. Q
70 g .
5 154
60 1 aQ *
b
5
50 2
£
5104 | ¢
40 2
o
H#
30 1
54
20 1
107 R EEEK ’
0<
0 | | . . | . : : : . . .
> % & g 0 PO 2% 2 R e° \)(PN <0 °
(& 1@ S S 29 & O £ oS N o °°
© 6ﬂ“q o“éé 9% ot (e\\o‘ é,Q’ofd ¢ c\’o‘\q ée S \\0 0@9@ Qa&;
o 3 o
BT =) (o
aov Jo

Protection level Protection levels

(e) Apps per protection levels (f) Permissions per app of each protection level

200 4 . 17.5 4 A
175 1 15.0
n 150 125
2 g
é 123 * é 10.0
E 100 3
s 3 754
% 75 H ¢ é
:] : 1 5 5
25 | I I 2.5 4
0 —I— e 0.0 —_—
CO\‘{ID mn-éOVID CO\I.’ID mn-éOVID
(g) Number of components per app (h) Number of broadcast receivers
2000 s m— ¢
50000 4 +
1750 4 .
1500 4 ¢ 40000 4 +

,_.
)
o
=1

30000

1000

Number of bugs

~
a
o

20000+

Number of code smells

10000 +

N 1 1 1

T T T T
CoviD non-CoVID CovID non-CoVID

(i) Number of bugs per app (i) Number of code smells per app
L] L]
104 17.5
L 15.0

i s . S
= T 1251
K ¢ &
26 ¢ S 1004
2 e +
E : 7.5 -1
g s g
£ £
H % 5o,

| g T‘

2.5
04 0.0 1 —‘—
CO\I«'ID nc)n-CIOVID CO\I/ID mn-éOVID
(k) Number of vulnerabilities per app (I) Percentage of duplicated code per app

Figure 1. Relevant characteristics of COVID-19 and non-COVID-19 apps

4. Characteristic 2: Privacy

Motivation. A disaster-management app may request users to permit the app to access a certain
functionality (e.g., Bluetooth) or personal data records (e.g., call history) on their smartphones.
While certain app functions may not work properly if no permission is granted, prior research [2]
has reported that COVID-19 apps (e.g., contact tracing apps) tend to be overprivileged [3], i.e.,
apps requesting permissions that are unrelated to the app functionality. Yet, it is unclear whether

this phenomenon is common on officially-verified COVID-19 apps and ordinary health and medical
apps.

Analysis method. We used the user permissions extracted from each app. We performed a
comparative analysis between COVID-19 and non-COVID-19 apps to investigate how different are
the (a) number of permissions requested by the apps, (b) the most frequently requested
permissions, and (c) the permissions that COVID-19 and non-COVID-19 apps do not have in
common. We performed a Mann-Whitney U test to measure the difference in app permissions
between COVID-19 and non-COVID-19 apps.

Results of the analysis. App-level: As shown in Figure 1(c), the number of permissions requested
by COVID-19 apps do not significantly differ from the permissions requested by non-COVID-19
apps (p-value=0.22 and a median of 9 permissions per app).

Permission-level: Our permission-wise analysis reveals that the frequency of COVID-19 apps that
request a certain permission is not significantly different from the frequency of non-COVID-19 apps
that request that permission (p-value=0.43). We identified a total 87 unique requested permissions.
COVID-19 and non-COVID-19 apps request 54 (62%) permissions in common. Figure 1(d) shows
a bar chart showing the top ten permissions requested by COVID-19 apps along with the
percentage of apps that request those permissions. There, INTERNET,
ACCESS_NETWORK_STATE, WAKE LOCK, and RECEIVE are the top three commonly
requested permissions by both COVID-19 and non-COVID-19 apps.

Protection-level: Figure 1(e) shows the most commonly used protection levels. We observe that
the majority of COVID-19 and non-COVID-19 apps request both normal (non-risky) and dangerous
permissions, in addition to permissions with undefined protection level (according to the Android
documentation). Moreover, we observe that COVID-19 apps tend to request fewer dangerous
permissions than non-COVID-19 apps (see Figure 1(f)).

We identified 13 permissions that are only requested by six COVID-19 apps. We also identified 20
permissions that are requested by non-COVID-19 apps, but not COVID-19 apps. We analyzed the
permissions requested by COVID-19 apps only to investigate their protection levels. We found that
the majority of those permissions do not require an explicit approval by users. Here is a breakdown
of the permissions that only exist in COVID-19 apps:
o seven permissions are of a normal protection level, i.e., minimal risk to other apps,
the system, or the user;
o three permissions are of a signature or system/signature protection level, i.e.,
granted to certificate apps;
two permissions are likely to be written incorrectly;
one permission with undefined protection level.

Suggestions for developers. Users may not install an app if they suspect any privacy concerns
[5]. Hence, developers should keep the set of requested permissions as tight as possible
(Suggestion A2), specifically by avoiding to request (a) an extensive number of app permissions,
(b) permissions that are unrelated to the app functionality, (c) permissions of high privacy risks, or
(d) permissions that are uncommon in health/medical apps.

Moreover, users expect that disaster-management apps collect nothing but physical proximity data
[4], in addition to the basic services, such as accessing the Internet. Thus, an app is expected to
access the Bluetooth/WiFi/GPS devices to be able to identify the user’s location data. In addition,
users might not be aware of the ‘normal-level’ permissions that an app requires, since such
permissions are granted by the system without user acknowledgment. Therefore, to facilitate users

onboarding, developers of disaster-management apps are encouraged to clearly declare in the app
description what permissions are required by the app to function properly (Suggestion A3). In this
way, developers are more transparent with users about the permissions required by their
disaster-management apps and which data is to be collected. Developers can do so by explicitly
highlighting such information in the app description, i.e., available prior to app installation, or at the
welcome screen of the app.

Finally, to retain already-onboarded users, developers should make it easy for users to
disable/enable a certain permission from the app itself or provide in-app links to allow users to
navigate directly to the permissions of the app in the system settings (Suggestion B1).

5. Characteristic 3: Software components

Motivation. The time pressure in developing disaster-management apps could affect the structure
of such apps. Android apps are composed of four types of components, namely activities, services,
broadcast receivers, and content providers. This information can be extracted from the manifest of
the apps, and may shed light on differences or the lack of thereof between disaster-management
apps and traditional apps.

Analysis method. We analyzed the manifest data previously extracted using Androwarn. We
investigated the number of such components in COVID-19 apps, and in a selection of general,
non-COVID-19 apps, as a reference; and compared these numbers to investigate any relevant
differences. Specifically, we performed Mann-Whitney U tests between the number of components
of COVID-19 and non-COVID-19 apps to identify any statistically significant differences.

Results of the analysis. The Mann-Whitney U test between the sum number of components in
COVID-19 and non-COVID-19 apps yields a p-value of 0.15, which suggests that the null
hypothesis of the test cannot be rejected (at a=0.05), i.e., there is no significant difference between
COVID-19 and non-COVID-19 apps in their respective numbers of components. We have found an
average of 28.33 components in COVID-19 apps, and 30.65 components in non-COVID-19 apps.
This difference is indeed not significant considering the variances in the two groups. The box plot in
Figure 1(g) provides visual evidence to the indifference between COVID-19 and non-COVID-19
apps.

The Mann-Whitney U test between the specific four types of components, however, revealed a
significant difference in the case of the broadcast receivers. As shown in Figure 1(h), we observe
that the median number of broadcast receivers of COVID-19 apps is higher than that of
non-COVID-19 apps: 6.7 and 4.6, respectively. The Mann-Whitney U test yields a p-value of
0.0016, strong evidence against the null hypothesis, i.e., there is a significant difference between
COVID-19 and non-COVID-19 apps.

Suggestions for developers. While broadcast receivers serve the purpose of integrating an app
into the larger ecosystem of apps, an abundance of broadcast receivers can be a pattern of
malicious software [7]. Extreme situations, such as a global pandemic, may motivate users to
remain flexible and introduce a trade-off between the development time of the app and its security
and privacy preserving mechanisms [9]. Hence, we suggest developers of disaster-management
apps to comply with guidelines and norms about component structure to (i) avoid user
disengagement due to the lack of trust and (ii) keep low the entry barriers for newly joining
developers, thus managing the fluctuations of available development effort (Suggestion B2).

6. Characteristic 4: Software quality

Motivation. It is of paramount importance for Android developers to promptly identify and fix
possible bugs, code smells, and vulnerabilities from the source code to avoid crashes, data
inconsistencies, or even data loss [9]. While achieving high quality software requires several
iterations and a deep reasoning on various technical design decisions, developers of
disaster-management apps will likely work under high pressure by both policy makers and society
in general. For example, in July 2020, Japan’s health authority had to temporarily remove its official
COVID-19 app from app stores due to a bug preventing infected users from entering critical
information to notify other users who had close contact with them. In the following, we investigate if
working under such high social pressure could impact the software quality of COVID-19 apps.

Analysis method. We measured the software quality using SonarQube, a commonly used static
code analyzer. To run SonarQube, we decompiled all apps by using dex2jar and JD-Core, two
widely-used off-the-shelf tools [9]. Finally, we analyzed each app via the standard Java quality
profile of SonarQube, which contains 625 rules, organized into four groups: bugs, vulnerabilities,
code smells, and code duplication.

Results of the analysis. Bugs: SonarQube supports 152 different types of bugs, ranging from
unclosed /O resources, classes compared by name, etc. With a median of 628 bugs per app,
COVID-19 apps have a higher number of bugs than non-COVID-19 apps, which have a median of
382 bugs per app (see Figure 1(i)). Specifically, the most recurrent bugs in COVID-19 apps are: (1)
ignoring the initial values of method parameters, caught exceptions, and foreach variables (8,155
occurrences), (2) dereferencing potentially null pointers (7,286 occurrences), and (3)
re-assigning variables to themselves (6,540 occurrences).
Code smells: Although code smells do not prevent apps from functioning, they could negatively
impact software maintenance. As shown in Figure 1(j), the median number of code smells in
COVID-19 apps (14,735) is higher than that of non-COVID-19 apps (9,222). The most recurrent
code smells in COVID-19 apps are: (a) not complying to naming conventions (72,353
occurrences), (b) having unused private fields (40,496 occurrences), and (c) declaring methods
or field with the same name or different only by capitalization (38,494 occurrences). While higher
numbers of code smells are expected, since code smells are not bugs, they would likely make
Android apps suffer from maintainability issues in the future, which tends to grow over time [8].
Vulnerabilities: Both COVID-19 and non-COVID-19 apps have very few vulnerabilities (Figure 1(k)).
This result indicates that Android developers tend to pay attention to security-related issues of their
apps in the e-health domain (both COVID-19 and non-COVID-19 apps).
Code duplication: Finally, we analyze the percentage of duplicated code within each app (Figure
1(1)). Code duplication is slightly higher in COVID-19 apps (median=3.96%) than in non-COVID-19
apps (median=3.34%). Code duplication is a frequent phenomenon in Android apps, mostly
because of the activity-intent-based Android programming model [8]. Nevertheless, a higher
percentage of duplicated code (as it is happening in COVID-19 apps) might lead to introducing
more bugs and overlooking inconsistencies [8], which may negatively impact app maintainability in
the future.

Overall, we can observe that the quality of COVID-19 apps tend to be consistently lower than
the quality of non-COVID-19 apps, especially for bugs and code smells. This phenomenon can be
explained by the time pressure associated with the development of COVID-19 apps. Indeed, prior

research has shown that time pressure has a detrimental effect on code quality and that it leads to
workarounds or compromises and minimal quality assurance [10].

Suggestions for developers. We suggest developers of disaster-management apps allocate
sufficient time for the next releases of their apps and to pay careful attention to fixing existing bugs,
since they can undermine the trust that end users place in the apps and, in turn, on their provided
services (Suggestion B3). Losing the trust of end users may lead to a drop in the adoption of
disaster-management apps, thus potentially jeopardizing the control of the disaster. Possible
solutions for improving the overall quality of the apps include allocating more time for analyzing the
requirements specification and documentation, routinely adopting code reviews, unit testing, and
inspecting while taking into consideration the feedback provided by user app reviews.

7. Conclusions

This study is the first investigation on professionals developing software under the combination of
the peculiar conditions due to the COVID-19 pandemic, such as working under a strong social and
political pressure.

We formulate the emerging concerns and suggestions to make them generically applicable to
disaster-management apps, hoping to help professionals working under similar conditions, such as
those for responding to natural disasters. It is important to note that the set of concerns and
suggestions emerging from this study is not meant to be exhaustive, but rather as a complement to
already existing generic guidelines for Android development, such as those by Hatamian on
privacy [11] and the ones by Verdecchia et al. on architecting Android apps [12].

We hope that our results will help professionals in (i) developing disaster-management apps with a
higher level of quality and (ii) making better informed decisions with respect to the ones made
during the COVID-19 pandemic.

References

[1] Google Play Store Support, “Requirements for coronavirus disease 2019 (COVID-19) apps”
https://support.google.com/googleplay/android-developer/answer/9889712 (accessed July 22,
2021).

[2] Azad, Muhammad Ajmal, et al. "A First Look at Privacy Analysis of COVID-19 Contact Tracing
Mobile Applications." IEEE Internet of Things Journal (2020).

[3] Felt, Adrienne Porter, et al. "Android permissions demystified." Proceedings of the 18th ACM
conference on Computer and communications security. 2011.

[4] Salathé M, Cattuto C. (2020) COVID-19 Response: what data is necessary for digital proximity
tracing? https://github.com/DP-3T/documents (accessed July 22, 2021).

[5] Gu J, Xu YC, Xu H, Zhang C, Ling H. Privacy concerns for mobile app download: an
elaboration likelihood model perspective. Decis Support Syst. 2017;94:19-28.

[6] Oronce, C.ILA., Scannell, C.A., Kawachi, I. et al. Association Between State-Level Income
Inequality and COVID-19 Cases and Mortality in the USA. J GEN INTERN MED 35, 2791-2793,
2020.

[7] F. Mohsen, H. Bisgin, Z. Scott and K. Strait, "Detecting Android Malwares by Mining Statically
Registered Broadcast Receivers," 2017 IEEE 3rd International Conference on Collaboration and
Internet Computing (CIC), pp. 67-76, 2017.

https://support.google.com/googleplay/android-developer/answer/9889712?hl=en
https://github.com/DP-3T/documents

[8] Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, Patricia Lago. How
Maintainability Issues of Android Apps Evolve. In IEEE International Conference on Software
Maintenance and Evolution (ICSME), Madrid, Spain, pp. 334-344, 2018.

[9] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX Conference on Security (SEC’11), 2011.
[10] Kuutila, M., Mantyla, M., Farooq, U., & Claes, M. Time pressure in software engineering: A
systematic review. Information and Software Technology, 121, 2020.

[11] Hatamian, M. Engineering privacy in smartphone apps: A technical guideline catalog for app
developers. IEEE Access 8 (2020): 35429-35445, 2020.

[12] R. Verdecchia, I. Malavolta and P. Lago. Guidelines for Architecting Android Apps: A
Mixed-Method Empirical Study. IEEE International Conference on Software Architecture (ICSA),
pp. 141-150, doi: 10.1109/ICSA.2019.00023, 2019.

[13] World Health Organization. Considerations for implementing and adjusting public health and
social measures in the context of COVID-19: interim guidance, 14 June 2021. No.
WHO/2019-nCoV/Adjusting_PH_measures/2021.1. World Health Organization, 2021.

About the Authors

Ivano Malavoilta is an assistant professor at Vrije Universiteit
Amsterdam, The Netherlands, and the Director of the Network
Institute. His research focuses on data-driven software
engineering, with a special emphasis on mobile software
development, software architecture, model-driven engineering,
robotics software, and empirical methods.

Taher A. Ghaleb (tghaleb@uottawa.ca) is a Postdoctoral
Research Fellow at the School of EECS at the University of
Ottawa, Canada. Taher holds a Ph.D. in Computing from

' Queen’s University, Canada. His research interests include

5| continuous integration, software testing, mining software
repositories, applied machine learning, program analysis, and
| empirical software engineering.

Istvan David is a postdoctoral researcher at the University of
Montréal, Canada. He received his PhD in Computer Science
from the University of Antwerp, Belgium. His research focuses
‘ on the foundations and applications of collaborative modeling,

inconsistency management, and multi-view modeling. He is also
active outside of academia, mainly in innovation consulting.

Jasper van Rooijen, MSc holds a Bachelor and Master degree in Computer Science from the
University of Twente, the Netherlands. He is currently employed at Thales.

Prof.dr. Marielle Stoelinga is a full professor of risk
analysis for high-tech systems, both at the University of
Twente and Radboud University, the Netherlands. She
holds a Master's degree in Mathematics \& Computer
Science, and a PhD in Computer Science, from

After her PhD, she has been a postdoctoral researcher at
the University of California at Santa Cruz, USA. Prof.
Stoelinga leads the executive Master on Risk
Management at the University of Twente, a part time
programme for risk professionals. She also leads various
research projects, including a large national consortium
on Predictive Maintenance and an ERC consolidator
grant on safety and security interactions.

