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Abstract—The typical optimization and control activities of
Digital Twins are driven by high-performance simulators. Due to
the significant complexity of systems subject to digital twinning,
constructing simulators of appropriate details is a costly and
error-prone endeavor. To alleviate these problems, we propose
an approach for inferring simulation models of Digital Twins
by machine learning. Instead of learning the simulation model
of one specific simulator, we aim at learning their construction
process. This generality enables reusing the inferred knowledge
in different (but congruent) Digital Twin settings. To achieve
this level of generality, we propose the Discrete Event System
Specification (DEVS) formalism for capturing simulation models;
and reinforcement learning (RL) for inferring DEVS models.
In this paper, we explore the opportunities and challenges in
combining these two techniques.

Index Terms—digital twins, simulation, DEVS, reinforcement
learning

I. INTRODUCTION

Digital twinning is a transformational trend in many do-
mains, such as smart production, precision healthcare, and
industrial energy management. Digital Twins (DT) are virtual
representations of physical assets, used for real-time monitor-
ing, control, and optimization of the said physical asset [1]].
The purpose of a DT is to provide a proxy towards data-
intensive applications needing to access data on the physical
asset. A pertinent example of such data-intensive applications
are simulators. Since the early 2000s, the typical role of
simulation has shifted from the design phase of complex
systems to their run-time phase, as simulators became first-
class components in nowadays’ complex systems, and enablers
to intricate techniques, such as DT [2f]. At the core of
the simulator, the physical asset is represented by a formal
model, from which complex algorithms calculate the metrics
of interest. This model has to capture the specificities of
the physical asset in appropriate details in order to consider
the results of the simulation representative. However, due to
the complexity of the systems subject to digital twinning,
constructing these models by hand is an error-prone, time-
consuming, and costly endeavor [3]]. Automation of model
construction can significantly alleviate these problems.

In this paper, we propose an approach for the automated
inference of simulation models in DT by machine learning.
Investing resources into the learning process only pays off
if the learned simulation model is representative to a class
of problems rather than one specific case. For example, after
learning how to construct the DT of a robot arm, one would

like to use this knowledge to construct the DT of a robot leg.
To this end, we propose the generalization of the simulation
model at the core of the DT to increase its representa-
tiveness. The Discrete Event System Specification (DEVS)
formalism [4] is a prime candidate for this purpose, as the
versatility of DEVS allows modeling the reactive behavior of
real systems in great details, including timing and interactions
with the environment—two aspects predominantly present in
the physical assets of DT [5]. This increased generality comes
at the cost of increased essential complexity, making the
manual construction of DEVS models an error-prone and
costly endeavor. Thus, proper automation becomes paramount.
Reinforcement learning (RL) addresses well this problem.
First, RL can be used to learn how to solve a class of problems,
rather than learning a solution to a particular case, if provided
with a problem at the appropriate level of abstraction. DEVS
has been shown to be the common denominator of many other
simulation formalisms [6]], thus choosing appropriately high
levels of abstraction becomes feasible. Second, RL is a gen-
eral framework to solve sequential decision-making problems,
based on an explicitly modeled set of actions. DEVS models
are constructed through a well-defined set of possible actions,
derived from the strict mathematical specification of the DEVS
formalism. The main contribution of this paper is a conceptual
framework that integrates DEVS and RL for inferring simula-
tion models of DT. Furthermore, we provide the specification
of mapping DEVS models onto RL concepts, and identify
the main challenges and opportunities in implementing and
deploying the framework.

II. BACKGROUND

Discrete Event Simulation and Machine Learning in and
for Digital Twins. Simulation methods are among the most
referred techniques in DT concepts [[7]]. Discrete event simu-
lation (DES) techniques are particularly popular due to their
versatility and applicability in various classes of engineering
problems. Kayani et al. [8] present a case study of applying
DES for reliable and fast scheduling analysis in pharmaceuti-
cal production systems. Karakra et al. [9] present how to use
DES to assess the efficiency of existing health care delivery
systems in hospitals. Advanced DES techniques are utilized
in industrial-scale settings as well, e.g., for assessing thermal
efficiency and resilience [10]]. The design and development of
DTs requires processing and analyzing big data. Due to this
challenge, the development of intelligent DTs is only possible



by applying advanced artificial intelligence (AI) and machine
learning (ML) techniques on the collected data. The high-level
workflow of DT development entails (i) collecting (big) data
from the physical asset (usually via IoT) and (ii) feeding this
data to an AI/ML model, which will (iii) create the DT [11]].
AI/ML has been used in the design, calibration and run-
time phases of DT engineering in numerous domains. Typical
applications range from hardware optimization to consistency
judgement [12]. Current DT development approaches aim at
learning the solution to one particular DT case. We propose
learning the construction process of classes of DT cases
instead. To enable this level of generality, we employ a specific
subset of ML techniques: reinforcement learning.
Reinforcement learning. RL is a class of machine learning al-
gorithms that learn the solution patterns of sequential decision
making problems, in which there is limited feedback [13]].
The learning process is driven by an agent that carries out
actions in its environment; and subsequently processes the
feedback of the environment: the new state of the agent, and a
scalar reward signal. An environment in RL is formalized as a
Markov Decision Process (X, A, P, R), where ¥ is the set of
states, A the set of actions, P : Pr(c’|o,a) the probability of
state transitions for a specific action, and R a reward function.
Through interactions with the environment, the agent learns
by trial and error what the best actions to perform in the
different states are, to maximize the cumulative rewards. The
intelligence of the agent is encoded in the policy 7(a|o) of
choosing action a given the exhibited state o. Reinforcement
learning is typically used in conjunction with the DT to enable
learning and fine-tuning [[14] the desired behavior of physical
assets. Closest to our approach is the work of Tomin et al. [[15]],
who train the simulator of an electrical power grid by RL. Our
approach, however, does not aim at learning the engineering
process of one specific case, but rather, a process usable in a
wider class of problems.

III. APPROACH

Fig. [T] outlines the proposed approach.

A. Learning simulation models

We assume a data collection facility on the physical side,
that is able to gather a sequence of measurements to represent
the Physical asset. The implementation of this step (Step 1)
is outside of our scope. The gathered data is used to infer the
simulation model of the Digital Twin. To do so, the RL Agent
processes the data and aims to predict later data points with
minimal error. The states of the RL Agent encode the various
configurations of the simulation model. As the RL Agent ex-
plores the environment (i.e., sequentially consumes the data), it
proposes newly derived configurations to the Evaluator (Step
2a), and based on the ability of the configuration to predict
future data points, the Evaluator provides the RL Agent with
the reward signal (Step 2b). The agent then adjusts its policy
7 according to the received reward. This exchange continues
until the whole dataset is processed. The trained agent can
then produce the Digital Twins (Step 3). Step 3 requires an
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Fig. 1: Overview of the approach with the scope of our
approach highlighted in 2a and 2b.

adaptation mechanism that is able to apply the RL Agent’s
Intelligence onto the specific physical asset. By repeating this
method on different physical assets, the RL Agent will learn
how to generalize its policy to new assets, and thus, to address
a class of problems, instead of a single case. Finding an
appropriate DT model for a given physical asset can be seen
as an instance of RL with a vast state space, deterministic
transitions and dense rewards, where the role of generalization
in the reuse between different physical assets is paramount.

To foster reuse, the representation of the physical asset
has to be appropriately abstract. For example, if the agent
learned its policy for a robot arm, and this intelligence is
to be applied for the case of a robot leg, the mechanics
of the physical asset may be almost identical, with a slight
difference in pitch, which is of the opposite direction in an
elbow than in a knee. The robot leg, therefore, is situated
within the same Context. However, a drone might differ too
much from the robot arm, and thus, the Infelligence inferred
by the RL Agent might not be applicable, placing the drone
outside the Context. Such contextual information should be
made explicit and accessible for the RL Agent, so that it
can factor them into the learning process, and incorporate
them in the policy 7. In general, the transferability of policy
between physical assets ¢; and ¢; should be expressed in
relation with the set of properties [P shared by ¢; and ¢;.
As a satisfactory constraint, Vp € P: ¢; F p A ¢; = p must be
decidable. In RL terms, this information should be encoded
in the states of the agent, along with the actual simulation
model configurations. We see an opportunity in reducing the
state space of the agent by encoding more than one simulation
model ((M);) configuration in one RL state, if the congruence
of such configurations can be expressed properly.

B. Discrete Event System Specification (DEVS)

We propose DEVS as the simulation formalism due its
versatility in modeling reactive behavior, and its potential to



serve as an assembly language of simulators [6]]. Addition-
ally, DEVS allows Afomic DEVS models to be recursively
composed into Coupled DEVS models, allowing arbitrarily
complex hierarchies of DEVS models. An Atomic DEVS
model is defined as M = (X,Y,S, init, Oint, Ocat, A, ta),
where X and Y are the set of input and output events; S is the
set of sequential states; ta : S — Rf{ oo 18 the time advance
function for each state; @ = {(s,e)|s € S,0 < e < ta(s)} is
the set of states with the time elapsed in them; g;,,;+ € @ is the
initial state; d;,,; : S — S is the internal transition function to
the next state according to ta; dep 1 @ X X — S is the external
transition function to the next state when an event occurs;
A S = Y is the output function [4]. Atomic DEVS models
are composed of architectural elements (X,Y, S, ginit), and
dynamic elements (0;,,¢, dezt, A, ta). Architectural elements are
feasible to build manually. This is because the architectural
patterns of DEVS models can be associated with specific
classes of real systems, enabling the reuse of the same ar-
chitectural templates for different system instances. However,
dynamic elements cannot be generalized across a class of
systems, and their development constitutes the most labor-
intensive tasks of constructing DEVS models. Here, we focus
only on Atomic DEVS, as Coupled DEVS models have no
dynamic elements.

C. DEVS models as RL artifacts

The mapping of DEVS onto RL concepts (Fig. [T) is defined
as follows. Assuming the environment (3, A, P, R),

e Vo e¥X:0— (M), ie., every state 0 € ¥ encodes one
class of congruent DEVS model configurations (M).

o Actions A are the elementary valid modifications of
DEVS models that bring class (M), to (M);, ie.,
Vafj € Ao;,0;€8: afj(oi) — o (Section .

o The state-transition probability matrix P is defined as
Va € A 04,05 € ¥ : Py(o;,05) € P — Pr(ojlo;,a),
and Pr(o|o;,a) — (0,1).

e R:3 — R maps each state to a metric (Section [[II-E).

D. Actions

Actions are derived from Atomic DEVS operations. For
brevity, we only show the add operations here.
Add state (M | s¢ S)— (M | SU{s})
Add transition (M | d & 0int) — (M | dine U {d}),
ta(d) — ]Raf Yoo
Initialization (M | Q) — (M | Q U {qinit})
Add output (M |y¢Y,A:S—=Y)— (M |YU{y})
Add input (M |2 & X, 80t : QxX — S) = (M | XU{z})
Additional actions for Coupled DEVS can be defined for (i)
coupling, including influence relationships and I/O translation;
and (ii) refinement. The learning algorithm will start from a
DEVS template the modeling expert has chosen to represent
the physical asset, and infer how to gradually refine the
DEVS model into the appropriate levels of detail, based on
the well-defined set of modeling actions. We note that the
formal approach works with an empty DEVS model too (i.e.,
when building a model from scratch); in practical applications,

however, a model template is usually provided, encoding the
rough estimates of the domain expert [15]].

E. Reward signal

The reward signal guides the RL. Agent in exploring and
eventually finding the most appropriate configuration. A lower
reward is associated with less appropriate configurations, and
a higher reward with more appropriate ones. The RL Agent
aims to maximize the cumulative rewards of its sequence
of actions, thus converging towards the solution. The reward
signal is provided by the environment, and is generated by the
reward function R. We envision at least two characteristically
different classes of reward functions. First, the RL Agent
should be guided towards learning to solve the initial case.
Second, to improve generizability, the RL Agent should be
guided towards learning to simulate the common properties of
the class of physical assets of interest. Typical properties of
interest are non-functional properties (NFP), such as safety,
reliability, and performance. However, NFPs in DTs exhibit
more complex semantics than in software. For example, safety
might be described as a function of the inertia matrix of
the physical asset [[16]. The relevant aspects and properties
of the physical asset have to be explicitly modeled using
the most appropriate formalisms, and at varying levels of
abstraction. The reward functions can then be combined in
any meaningfuk algebraic way, e.g., by taking their weighted
average R = W Flexibility in adapting the weights can
be introduced to' allow adapting the RL Agent to the different
phases of the learning process. For example, at the beginning,
learning for descriptive power might not be as important as
learning for predictive power; while in the later phases the
importance of these factors might be different.

IV. CHALLENGES AND OPPORTUNITIES

The approach outlined in this paper poses complex chal-
lenges to overcome, but offers many opportunities. In this
section, we describe the ones we have already identified.

A. Challenges

One of the main challenges to overcome is the generaliz-
ability of DT settings. Our approach promises tackling this
challenge by generalizing the simulation formalism, but in-
depth investigation of the simulation models and the available
RL frameworks is required to appropriately determine the
practical feasibility. As discussed, generalizing the decision-
making policy necessitates to include contextual information
in the RL Agent’s states. The main challenge is formulating
the representation of contexts while keeping the state-space
as small as possible. Appropriately capturing the reward
signal might become problematic when learning for better
descriptive power. Another challenge will be to design the
reward function to efficiently guide the agent towards good
solutions. In general, ML requires high volumes of data
to achieve adequate performance. In our context, the lack
of openly available data might be an obstacle. Finally, the
mechanism of adapting/applying the inferred intelligence to
a specific instance might pose software engineering challenges.



B. Opportunities

One of the main directions to explore is the ability of
validity frames [17] to capture the contextual information of
the physical asset and its environment. By that, the conditions
under which the policy 7 is transferable to other problems,
could be expressed in a formal way. We see opportunities
in incorporating human actors for numerous purposes.
As discussed, model templates provided by domain experts
increase the performance of the approach. While humans
perform poorly in specifying optimal models, they perform
considerably well in specifying reasonable ones [18]]. Further
extending the scope of human involvement, domain experts
could be employed in the oversight of the learning process,
or allowing the domain expert to take over the modeling
tasks in specific cases, and allow the RL Agent to learn
from the human. Despite the high costs of human reward
function in naive RL approaches, learning from the human
has been shown to be feasible in numerous settings [19], [20].
Alternative techniques, such as learning from demonstra-
tion [21]] and active learning [22]] should be considered to
augment the approach with. Once the RL Agents become
experienced enough with different instances and flavors of
the same class of DT, new agents can be trained through
transfer learning [23], i.e., by learning from the experience of
older agents. Such settings would allow removing the human
from the loop and replace the manually assembled default
policies with the ones the agents themselves inferred from
previous cases. To enable better and more targeted harvesting
of data on the physical asset, we anticipate research directions
on the co-design of the instrumentation of the physical
asset with twin models. That is, while the RL Agent learns
the optimal simulation model, it also provides hints on policies
that are not attainable with the current instrumentation of the
physical asset, but could be attained given a reasonable re-
configuration of the physical side.

V. CONCLUSION

In this paper, we outlined an approach for the inference of
simulation models in digital twins by reinforcement learning.
We have identified the lack of generizability being a poten-
tially blocking problem in the automated construction of DT.
Our proposed approach tackles this issue by generalizing the
simulation formalism. This attempt comes at the cost of vastly
increased essential complexity of the simulator. The resulting
setting, however, enables applying reinforcement learning to
automate the process. We plan to build a prototype using
PythonPDEVSﬂ an openly available implementation of the
Parallel DEVS. For the reinforcement learning component, we
will use a well-established deep reinforcement learning library,
e.g. Tensorforceﬂ or Stable BaselinesSﬂ

Uhttp://msdl.cs.megill.ca/projects/DEVS/PythonPDEVS
Zhttps://github.com/tensorforce/tensorforce
3https://github.com/DLR-RM/stable-baselines3
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