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Abstract—Digital twinning is gaining popularity in domains
outside of traditional engineered systems, including cyber-
physical systems (CPS) with biological modalities, or cyber-
biophysical systems (CBPS) in short. While digital twinning
has well-established practices in CPS settings, it raises special
challenges in the context of CBPS. In this paper, we identify
such challenges and lessons learned through an industry case of
a digital twin for CBPS in controlled environment agriculture.

Index Terms—controlled environment agriculture, industry,
model-driven, report, simulation

I. INTRODUCTION

Digital twins are virtual representations of physical as-
sets [1], mirroring their prevalent state with high fidelity. The
tight coupling with its physical counterpart allows the digital
twin to provide a proxy interface for advanced computer-
aided services, such as monitoring, predictive analytics, and
automated decision-making. Digital twinning is especially
popular in engineering domains where models of the under-
lying system are accessible or can be efficiently constructed,
like cyber-physical systems (CPS) [2] and smart production
assemblies [3]. Model-driven engineering (MDE) [4] is par-
ticularly well-positioned in this realm and provides digital
twinning endeavors with mature techniques for the creation
and management of heterogeneous models [5], [6], and using
models at runtime [7], [8] to capture the prevalent state of
the physical twin. Thanks to its beneficial properties that
enable an overall higher digital maturity, digital twinning is
gaining popularity in a wide array of domains, including
cyber-physical systems with biological modalities, or cyber-
biophysical systems (CBPS) in short. Pertinent examples of
CBPS can be encountered in smart agriculture [9] and preci-
sion healthcare [10], where biotic (living) and abiotic (non-
living) components are integrated and operated in unison.

Due to their biotic components, CBPS are characterized by a
high degree of uncertainty and stochastic attributes [11]. These
traits substantially limit the understandability and modeling of
CBPS and coupled with the lack of clear guidelines, render
the digital twinning of CBPS exceedingly more challenging
than the digital twinning of traditional CPS.

To help the MDE community mitigate the risk of their
prospective biophysical digital twinning endeavors, we re-
port our experiences from an ongoing industry collaboration,
outlining challenges and lessons learned from a computer
scientist’s point of view. Our work is situated within a spe-

cific case of Controlled Environment Agriculture (CEA) [12].
CEA is the technique of growing crops in an isolated and
artificially controlled environment. Controlled environments
allow for better planning and execution of the growth strategy,
substantially reducing the associated risks, costs, and waste.
Digital twinning has become a technique of particular interest
in CEA for the optimal control of the environment.

The main contribution of this paper is the list of challenges
and lessons learned from a project on the digital twinning of
an industry-scale CBPS. Through the specific case of CEA,
we ground our findings in real requirements. Nevertheless, our
observations can be extended to the broader domain of CBPS.

II. BACKGROUND

In this section, we present some background concepts, the
partner organization, and the twinned system.

A. Digital Twins

The goal of the digital twin is to allow reasoning about the
prevalent state of the physical twin without having to observe
or query it directly. In essence, the digital twin is a proxy
for digital services to the physical twin. Examples of such
digital services include visualization and monitoring, decision
support for human stakeholders, and automated control and
re-configuration of the system.

At the core of a digital twin, models of the physical
twin keep track of its prevalent state [13]. These models are
maintained by the continuous processing of real-time sensor
data originating from the physical twin and constitute the
foundations of the services provided by the digital twin.

Such services are often enabled by simulators [14]. Sim-
ulators are programs that encode a probabilistic mechanism
on a computer and enact its changes over a sufficiently long
period of time [15]. In this paper, we present a digital twin with
advanced simulation aspects that supports the decision-making
process of domain experts through quantitative and qualitative
what-if analyses and real-time predictive capabilities.

The control of the physical twin is achieved in an automated
fashion through the actuators of the system. However, some
safety-critical settings, such as CEA, might limit the autonomy
of the digital twin and prohibit automated actuation.
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B. Partner organization

Ferme d’Hiver [16] (transl. “Winter Farm”), is a Montreal-
based start-up targeting the production of off-season, high-
nutrition fruit, and vegetables by CEA techniques, without the
use of chemical pesticides. The mission of Ferme d’Hiver is
to improve the food autonomy of Canada, and within it, the
province of Quebec. Food imports in Canada were reported to
comprise about 8.2% of the total import merchandise [17] of
CA$614 billion [18] in 2021, amounting to CA$53.63 billion.
These figures, coupled with the steadily increasing population
of Canada by over 300 000 annually since the 1960s, pose se-
rious threats to the sustainability of Canadian food autonomy.
Four-season climate challenges sustainable food autonomy
as it prevents year-round open-air farming. This problem is
vastly exacerbated in Quebec with dry cold Winters and
humid hot Summers spanning an average temperature range
of 40◦C. CEA alleviates these problems through resource-
and cost-efficient solutions to produce vegetables and fruit
in a closed environment by artificial lighting and managed
environmental conditions. In this context, Ferme d’Hiver aims
to optimize the yield and energy consumption of its operations
by integrating various cutting-edge technologies to automate
its production system and by recovering the heat produced by
vertical farming lights to heat adjacent greenhouses.

C. Controlled Environment Agriculture

Increasingly unpredictable environmental conditions chal-
lenge traditional agriculture. In four-season climate areas, tem-
perature, precipitation, and sunlight differ significantly season
by season. Large-scale disruptions, such as climate change and
the steady growth of the global population further exacerbate
this issue [19]. To address these challenges, CEA [12] isolates
crops from natural environmental conditions throughout the
plant development cycle. CEA constitutes a pertinent example
of CBPS in which environmental conditions are controlled
through highly configurable light, irrigation, and HVAC sys-
tems. To enable optimal growing conditions, expert domain
knowledge is used to properly orchestrate these systems.

Thanks to automation, CEA achieves better yield and qual-
ity than traditional farming settings. Unfortunately, the im-
proved output comes at the expense of higher energy consump-
tion [20]. Consequently, the cost factors of CEA settings are
sensitive to changes in the artificial environmental conditions
and human control might easily result in disadvantageous
configurations. Computer-aided support is in high demand,
positioning CEA as a prime candidate for digital twinning.

CEA is chiefly associated with vertical farming, the agricul-
tural practice of growing plants using often soilless platforms
stacked vertically, with the purpose of reducing crop yield per
unit area of land [21]. The vertical farming environment at
Ferme d’Hiver is composed of 11 aisles, each split into two
sections, with 22 walls of vertically stacked soilless containers
for the plants. Each section has a dedicated lighting and irri-
gation system (defining a plantation zone) spanning its entire
height that provides photosynthetically active radiation (PAR)
to the canopy and meets its irrigation needs. The ventilation

of the stacked plants is handled by a central HVAC system
that condenses the water evaporated from plant canopies to
be reused for irrigation purposes. The HVAC system is also
connected to a system of vertical and horizontal plenums for
uniform distribution of the conditioned air next to the plants.

D. CEA production room

The physical twin is the production room of Ferme d’Hiver.
It is composed of physical and biological components.

Physical components. Physical components are organized
by subsystems. The lighting subsystem is responsible for
adapting the light conditions in the room and triggering photo-
synthesis in the plants. The irrigation subsystem is responsible
for providing the plants with water and nutrients required for
their growth. Plants are primarily irrigated by drip irrigation,
where water is periodically dripped on the plant substrate
through appropriately situated pipes, tubes, and valves. The
HVAC subsystem ensures proper air temperature and humidity
in the room as the lights, temperature, and humidity change.

Each subsystem provides a set of sensors and actuators
which we use to support the interaction between the dig-
ital twin and the production room. The lighting system is
equipped with sensors to measure the temperature of its LED
components and photosynthetic photon flux density, a com-
monly used metric by biologists to quantify photosynthesis-
related phenomena [22]. The irrigation system is equipped
with sensors to measure the soil temperature, water content
and electrical conductivity (EC), the irrigation solution (pH,
electrical conductivity, flow rate), and the current capacity of
the water storage tanks. The HVAC system is equipped with
sensors to measure the temperature and flow rate of air flowing
through the fans, and the liquids flowing through the pumps.

Biological components. The production room is populated
with plants that are ready to produce the crop. The plants
are grown in specially designed pots contained commercially
available substrates (apprx. 1.5 liters/plant). About 50 000
plants are present in the production room at any point,
mounting up to 3 tons of thermal mass, contributing substantial
inertia to the system. The plant canopy in the room releases a
significant amount of moisture into the air through the process
of evapotranspiration [23]. Consequently, biological compo-
nents have a measurable impact on the physical properties of
the room, especially temperature and humidity.

The impact of the plant on the production room varies
during the lifecycle of the plant. Along its production cycle,
the plant goes through stages of vegetation (rooting and leaf
development) and regeneration (flowering and fruiting). The
conditions required to induce each stage as well as their length
vary widely according to the plant cultivar and environmental
conditions—light quality, light duration, and temperature—
and could be enforced by stressing the plant. These periods
of stress affect the energy balance of the plant, as the plant
may conserve the energy to produce fruits or release it to cool
down. Inducing each stage through stressing the plant requires
daily manual observation of the plant and the production room,
and subsequent adjustments by agronomists and the farmers.



E. Motivation for digital twinning

The digital twinning of the production room is motivated
by the complexity of control decisions that are not feasible
without computer-aided means. While domain experts can rely
on their expertise in smaller-scale operations, these efforts do
not scale at the size of the production room.

Operative use cases of the digital twin focus on the op-
timization of production. One such optimization is the im-
provement of the yield-to-energy consumption ratio. In this
case, the optimization objective is the maximization of the
mass of produced crop and minimization of energy consump-
tion by hardware elements. Another optimization scenario is
concerned with the right timing of harvest. Producing and
maintaining crop consumes energy from the plant. Optimally
scheduled harvest maximizes the energy retention of the plant
by relieving it from its produce. In support of a typical
precision farming scenario, the digital twin is also used to
stimulate plant growth at a pace that produces a predetermined
amount of crop over a period of time. In our settings, 50
grams of strawberries need to be produced on a weekly basis
throughout the production lifecycle. The precision demand of
such a scenario vastly exceeds human reasoning capabilities.

Strategic use cases include technical decision-making sup-
port for improvements to the room and surrounding facilities.
Based on an expected output of crop, the simulators of
the digital twin will support engineers in dimensioning the
equipment to be acquired for newly erected production rooms.
To optimize the input and output factors of the overall supply
chain the company is situated within, the digital twin will be
used for what-if analyses to set quality gates for their plant
suppliers. As a cross-cutting concern, in support of decision-
making services, the digital twin is leveraged as a safe and
economic proxy for the real environment in the training of
AI agents. In such scenarios, large quantities of data can be
generated, e.g., for deep learning purposes, or a continuous
data stream can be generated, e.g., for reinforcement learning.

III. REQUIREMENTS FOR DIGITAL TWINS OF CBPS

Here, we elicit requirements for the digital twin to be devel-
oped. To contextualize the requirements and understand their
relationships, we construct a conceptual reference framework
and map requirements onto it, as shown in Fig. 1.

Conceptual reference framework

We obtained the framework by the case-based generalization
approach of Wieringa and Daneva [24]. First, we analyzed the
requirements that emerged in our project. Second, we decom-
posed the requirements architecturally. Third, we generalized
the requirements to architecturally similar cases. Finally, we
organized evidence by the conceptual reference framework.
The framework provides the following components.
Production room: The physical twin. It includes biological

and physical entities, as well as human staff members
who interact with the production room.

Physics and Biology models: Responsible for capturing the
prevalent state of physical and biological components.

Populated either by real-time data from the Production
room or by the outputs of the simulators.

A, B: Data stream from the physical and biological compo-
nents of the production room, respectively.

Inferred: The physical and biological models are partially
populated by data from the production room (via A
and B streams), and partially inferred, implementing a
soft sensing functionality. Soft sensors are virtual sen-
sors that provide a real-time sensing signal by accurate
predictions [25] and by that, can serve as a cost-efficient
replacement for more expensive hardware sensors.

C: Information flow between the physical and biological
models to support inference.

Physics simulator, Biology simulator: Computer-aided rea-
soning machinery. They perform analysis based on the
models and universal rules of physics and biology.

D, E: Control and information flow from the simulators to
their respective models.

GUI/API User-facing endpoint. Graphical user interfaces
(GUI) for human stakeholders and application program-
ming interfaces (API) for computer-aided agents.

Actuation: Responsible for controlling the production room.
F, G: Information stream to the user-facing services used by

humans, machines, and actuation services.
H: User interactions with the system.
I: Control feedback to the production room. It can be fully

automated or can feature a human in the loop.

A. Data and information gathering needs to be ensured (R1)

The ability to process real-time data is a distinguishing
feature of digital twins. Real-time data stream processing
requires specialized infrastructure that ensures low-latency
data ingestion, persistence, and access. At the same time,
such data infrastructures need to exhibit flexibility to allow
for channeling data streams of newly deployed sensors to the
digital twin. Commonly used solutions have been developed
in Internet-of-Things (IoT) settings, e.g., under the Eclipse
IoT umbrella project [26]. However, acquiring, operating, and
maintaining advanced IoT frameworks may not be within
reach for every organization with digital twinning ambitions.
This is typical for companies with a core business in do-
mains characterized by limited digital capabilities, such as
agriculture. Such companies typically resort to vendor-specific
solutions with limited flexibility and APIs, resulting in vertical
siloes imposed by vendors, from sensors to end-user software.
Siloed settings, in turn, hinder digital twinning efforts as they
prevent easy integration of systems. A direct link to sensor
data readings and reliable manual data collection procedures
are crucial requirements for digital twinning.

Implications. Digital twins aiming to address instances of
this requirement need to augment the production room with
proper data capabilities and facilitate data links A and B.

B. Models and simulators need to be constructed (R2)

MDE helps manage the accidental complexity of the prob-
lem at hand by elevating the level of reasoning to higher levels
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Fig. 1: Requirements (R1–R3) contextualized within the conceptual reference framework

of abstraction. Explicit modeling of the relevant aspect of the
system allows for narrowing the cognitive gap between the
problem and the expert’s reasoning process. This is especially
desirable in complex CBPS settings, such as CEA. Simulation
makes use of these models for analysis and optimization.

However, modeling and simulation based techniques come
at the cost of the increased complexity of developing models
and simulators. Due to the inherent complexity of CBPS, one
modeling formalism is not sufficient to capture every relevant
aspect of the system. Techniques such as multi-paradigm
modeling [6] and co-simulation [27] promote domain-specific
modeling and simulation concerns, while distributed simula-
tion [28] allows for reasoning on resource-constrained devices
often present in IoT and edge infrastructures. However, their
application requires coordination between models and simula-
tors of different concepts, units, timescales, etc.

Implications. Digital twins aiming to address this require-
ment must employ advanced engineering techniques to deliver
models and simulators, and their data links C, D, and E.

C. Actuation autonomy needs to be flexible (R3)

While one of the distinguishing features of a digital twin
is the automated actuation of the production room, trust, and
safety challenges limit this ability in digital twins of CBPS.
Biological modalities of the production room are often artifacts
of living organisms, e.g., plants, animals, or humans. In such
cases, particular safety requirements apply which, in turn,
often demand verifiable and provable safety guarantees from
the system. In the absence of such guarantees, operators of the
digital twin need to gain trust in the system by gradually giving
it more actuation autonomy. During its lifecycle, the digital
twin exhibits various levels of actuation autonomy, including
human-actuated digital twin, followed by digital twin with
human oversight, and finally, reaching full autonomy.

Implications. Digital twins aiming to address this chal-
lenge need to support various levels of actuation autonomy,
along with its data links G and I. In particular, the data links
need to account for the two extremes of the autonomy scale
and produce (i) humanly comprehensible actuation instruc-
tions, and (ii) API-level instructions for actuation components.

IV. DEVELOPING A DIGITAL TWIN FOR CEA

Here, we discuss the digital twin we are developing for the
vertical farming of strawberries in a controlled environment.

A. Approach

We approach the system subject to twinning as a cyber-
physical system with biological modalities and maintain a
systems engineer’s point of view. MDE is central to the design
and implementation of the digital twin. We rely on different
modeling formalisms, make extensive use of model-based
analysis and simulation, and generate code from models.

Following the principles of multi-paradigm modeling
(MPM) [6], we model every relevant aspect of the system
at the most appropriate level(s) of abstraction, using the most
appropriate formalism(s). We use the Discrete Event System
Specification (DEVS) formalism [29] to model the appliances
in the room. DEVS is a compositional formalism that allows
for hierarchically composed simulators, a trait that, in turn,
allows for reasoning at different levels of abstraction. We
use continuous biology formalisms to model the growth of
the crop, captured via differential equations, implemented in
Simulink’s Causal Block Diagram language. Finally, we use
continuous physics formalisms to model the energy balance
between the previous two models, captured via differential
equations and a solver in Matlab and Python.

We integrate these models by explicitly modeling the or-
chestration of simulators via DEVS. We use process models
to describe the schedule of treatments the crop requires.
We use state-of-the-art code generators as we operationalize
Simulink and Matlab models as Functional Mockup Units
(FMU). Each FMU contains a model and its solver, encoded
as C executables with XML interfaces. Additional details on
the simulators are available in previous work [30].

B. Real-time monitoring

A cohort of 50 000 plants may produce multiple batches
of fruits that are regularly harvested over time (13-28 weeks)
and may be subjected to successive vegetative and regenerative
growth and development processes. To schedule interactions—
such as treatments and harvesting—experts need to access
aggregated information about the plants. In addition, Ferme
d’Hiver has multiple geographically distanced sites that require
coordinated oversight. Real-time monitoring provides experts
with the ability to observe the production room and make
better and faster decisions.

As shown in Fig. 2a, the requirement of real-time mon-
itoring necessitates establishing a direct data link with the
production room (A and B), and the physics and biology



GUI/API
F

H

Production 
room

A
B

Phy. model

Inferred

Bio. model

Inferred
C

(a) Real-time monitoring and Real-time
inference

GUI/API

Physics 
simulator

Biology 
simulator

FH

ED Phy. model

Inferred

Bio. model

Inferred
C

(b) What-if analysis and AI/ML training

ActuationGUI/API

Physics 
simulator

Biology 
simulator

F GH

I

E

Production 
room

D

A
B

Phy. model

Inferred

Bio. model

Inferred
C

(c) Configuration space exploration

Fig. 2: Digital twinning concerns as instances of the conceptual framework

models to be readily available to persist sensor data in an
intermediate model from which the GUI is populated (F).
The physics model captures the prevalent state of the physical
environment, i.e., the production room. Similarly, the biology
model captures the prevalent state of the plants in the pro-
duction room. From a multiplicity point of view, the solitary
biology model represents all the plants in the production room
in an aggregated view. Both models follow runtime model
principles [31], i.e., they are designed with the intent to be
able to handle frequent updates. In monitoring scenarios, the
physics model is updated continuously with real-time sensor
data from the production room, and the biology model is
updated by manually gathered data. Manual data collection
includes non-destructive measurements, e.g., counting individ-
ual organs (e.g., leaves, stems), and destructive measurements,
e.g., measuring root length, root density, or the weight of
individual organs and their chemical concentrations.

C. Real-time inference

The physics and biology models allow for inferring metrics
that might not be directly observable. These metrics often carry
crucial information for domain experts and help formulate
appropriate intervention strategies. For example, an agronomy
expert might want to reason about the physiological properties
of the plant by assessing how much water is currently absorbed
by the plants. However, there are no sensors to directly
measure this metric at the facility. In a closed environment
agriculture setting, the amount of water in the environment is
practically constant and most of its states can be measured
by physical sensors. Real-time inference provides experts the
ability to enrich their reasoning process with information that
would be infeasible to directly observe.

Architecturally, this service is identical to Real-time moni-
toring (Fig. 2a), but in addition, it makes use of inferred values
in the physics and biology models. The data link between
the production room and the runtime models (A and B) is
still the primary source of information, but performant in-
place analyses provide additional inferred information. This

mechanism is known as soft sensing [25]. The inference is
carried out over the overall biophysical model, necessitating
information flow between the two models (C).

D. What-if analysis

Ferme d’Hiver aims to optimize the yield (kilograms of
crop produced) and the energy consumption of its operations
(kilowatt-hours of electricity consumed). Both metrics are
evaluated over the 13-week production cycle. However, experts
have to make decisions about the configuration frequently and
from the beginning of the production cycle. Here, a configura-
tion means the entirety of the settings of each actuator. Due to
the lack of predictive models, experts have to rely on heuristics
when choosing configurations. Previous experience is used as
the starting point to find the approximate configurations for
the given production cycle. Additionally, the agronomy expert
might carry out small-scale trial-and-error experiments, which
refine their knowledge about the effect of specific settings on
crop yield. Finally, the yield is assessed on a weekly basis to
evaluate the progress of the production cycle. What-if analysis
provides capabilities to predict the values of yield and energy
consumption based on the settings of the equipment provided
by the experts. Additionally, it provides experts with interfaces
for experimenting with input configurations and output values.

As shown in Fig. 2b, this service does not require direct
input from the production room. However, it requires the
appropriate simulators to carry out what-if simulations. The
physics simulator is tasked with, e.g., calculating energy
consumption. The biology simulator is tasked with, e.g.,
calculating the crop yield. The simulators use the same models
that are used in Real-time monitoring and Real-time inference
to capture direct and inferred data from the production room.
However, instead of real-time data, models are populated
by synthetic values from the simulators (D and E), based
on the simulation scenario specified by the expert (H). Two
simulation components are used to calculate various metrics
of physical and biological nature.



E. Environment for training AI/ML agents

Exact solutions are intractable in CBPS due to their vast
complexity. Machine learning (ML) techniques can alleviate
the problems of manually designing models [32]. Specifically,
in CEA, ML techniques can be used to infer patterns of the
complex underlying heterogeneous systems and automate the
recognition of optimal configurations in specific situations
in the production room. However, these techniques require
vast amounts of data, which is often not feasible to collect
from the real system, e.g., due to various functional and
extra-functional considerations, such as the efficiency of data
collection sourced from biotic components, and safety of
concerns of biotic components (here, the crop) during data
collection. In CBPS, the impact of stimuli takes a substantially
longer time to manifest, rendering real-time data collection in-
effective. Furthermore, biological entities impose higher safety
standards. Digital twins are prime candidates to establish safe
ML environments thanks to their ability to generate training
data and automatically label it [33], [34].

Architecturally, this service is identical to that of What-
if analysis (Fig. 2b). The main difference is the end-point
of information stream F. While in What-if analysis, the end-
point is a user interface for the human stakeholder, in AI/ML
agent training, the end-point is an API for the learning agent.
Depending on the machine learning approach, the API needs
to support different interaction protocols. For example, deep
learning [35] scenarios require vast amounts of data generated
in one batch for off-line processing, while reinforcement
learning [36] requires smaller amounts of data generated in
an interactive fashion. The success of this service relies on
the proper calibration of the digital twin and its ability to act
as a virtual experimental device [37].

F. Configuration space exploration

As explained in What-if analysis, our aim is to optimize the
yield and the energy consumption of its operations. During the
day-to-day operation, the room is configured by the agronomy
expert and the engineer, concerned with yield and energy
consumption, respectively. Both experts make configuration
decisions that aim to generate the most optimal outcome for
their purposes. In a number of negotiation steps, the agronomy
expert and the engineer agree on a configuration that is
acceptable for yield production and is feasible with the current
equipment. However, assessing the optimality of their choices
is not feasible as neither expert has a complete view of the
overall CBPS. It is the union of the two views that provides a
holistic image of the production room. During the negotiation,
the experts explore the space of configurations in a joint effort,
while optimizing for their own goals. A joint effort is required
because the two metrics are strongly interleaved. While a
higher amount of yield generates a higher amount of revenue,
it also consumes more energy. Additionally, plants have an
optimal level of yield. While forcing the plant to produce more
crop is possible, it will cost more energy and reduce the energy
efficiency of the plant. Thus, optimal configurations must find
a trade-off between high yield and low energy consumption.

This requirement makes use of the overall architecture, as
shown in Fig. 2c. An exhaustive search for the best possible
configuration is not feasible due to the large number of com-
binations the experts can choose from when configuring the
production room. Therefore, an intelligent search approach is
required. For this purpose, we rely on design space exploration
(DSE) [38]. In a DSE approach, an underlying design is
modified in a sequence of steps, and in each step, the newly
obtained design is evaluated with respect to a set of metrics.
The design space is the closed set of every possible variation of
the original design that can be reached from the original design
by applying a sequence of the permitted change operations. In
our case, the design is the configuration of the room; thus,
we refer to this approach as configuration space exploration.
Change operations capture the actions of the experts, e.g.,
increasing the temperature of the room by 1◦C, turning the
fans of the HVAC to 100%, extending the duration of a day,
or increasing the light intensity. Although the search space
is theoretically infinite, agronomy experts and engineers can
prune the search space by setting reasonable metric boundaries
for the room and plants. The exploration process is guided
by heuristics to converge to optimal solutions rapidly. We
implemented the typical DSE heuristics in our digital twin,
including hill climbing, simulated annealing, depth-first, and
breadth-first search. The search is governed by one or more
objective functions. In our case, at least two objective functions
are considered. The first objective is always minimizing energy
consumption. The other objectives aim at maximizing crop
yield and differ depending on the plant growth phase.

V. CHALLENGES IN DIGITAL TWINNING OF CBPS

In this section, we elaborate on the challenges we faced
during our project.

Unique influencing factors

We identified a set of factors characteristic of BPS that gave
rise to the challenges we faced. The notion of system state is
hard to characterize in CBPS due to the exclusively continuous
nature of biological systems. Although discretization is still
possible, it comes at the cost of elevated information loss as
compared to traditional physical or cyber-physical systems.
Causal relationships are challenging to identify in CBPS due
to the limited understanding of biological entities. Finally, time
scales significantly differ from those in physical engineering
settings. Observing the effects of a particular treatment is
hardly ever instantaneous as effects might take weeks to
manifest. This exacerbates the challenge of establishing causal
relationships and limits the applicability of traditional, causal
modeling formalisms, such as Simulink [39] and DEVS [29].

A. Data and information gathering needs to be ensured (R1)

Challenge 1: Data is a critical enabler for both design
and operation. The construction of digital twins, especially
their simulation models requires readily available historical
data. This is especially crucial in the calibration phase of
simulators. We faced substantial challenges in this regard,



especially because of the lack of systematic data collection
methods, which is expected in companies in less digitalized
domains, such as agriculture. As for the operation, all but one
service (with the exception of AI/ML agent training) rely on
data emerging from the production room.
We recommend making it a priority to obtain data of ac-
ceptable quality at the onset of the project to accelerate the
development of digital twins. Ensuring data early on helps
avoid the pitfalls of uncalibrated digital twins.

Challenge 2: Automated data collection runs through
siloed subsystems. The sensors are part of larger, vendor-
specific vertical silos, including a building automation and
control (BAC) system, and a plant physiology support sys-
tem. Both systems define end-to-end vertical solutions from
hardware to user-facing functionality. However, they do not
provide APIs for integration scenarios. To provide a better-
managed interface for data-intensive services a central data
repository was deployed on the premises prior to our project.
Due to vendor-imposed constraints, sensor readings are carried
out in the order of minutes, which results in substantially fewer
readings compared to traditional CPS settings.
We recommend advocating for open APIs and relying on
IoT frameworks that provide flexible foundations for many
digital twinning scenarios, such as Eclipse Ditto [40]. In many
cases, vertically integrated siloes are developed by high-tech
suppliers who can open up their APIs.

Challenge 3: Large amount of data is collected manually.
Manually collected data leads to an error-prone and costly
process that is also slow, especially compared to sensor read-
ings. Manually collected physiological data of plants includes
metrics such as yield, plant size, flower color, and traces of
diseases. In our setting, staff members collect observations in
digital sheets, which are subsequently uploaded to the system
in a batch fashion. While the quality and quantity of data are
not comparable to those in traditional CPS, the slower rate
of change of plants permits a slower data gathering process.
Such practices align well with grower companies that might
not have advanced data governance in place.
We found success in maintaining a consultant’s point of
view and advocating for accelerator technologies with high
return-on-investment, such as computer vision. The digital
evolution of Ferme d’Hiver has resulted in gradually increasing
automation in collecting physiological data.

Challenge 4: Intrusive and destructive measurements
are unavoidable. Testing the properties of plants is often
achieved by intrusive measurements and destructive proce-
dures that are irreversible. For example, measuring the root
length of plants is achieved by removing the plant from the
soil and measuring its longest root, while measuring the weight
of the various plant organs requires the plant’s dissection.

As the plant is turned to waste, it cannot be used for lon-
gitudinal measurements in which long-term treatment-effect
relationships are investigated. In effect, testing properties that
require destructive measurements, inhibits testing properties
that require longitudinal measurements. In addition, there are
ethical concerns when working with biological entities [41],

although this is less of a concern in the case of plants.
We recommend avoiding destructive measurements as much
as possible and relying on inferred properties and mean-
ingful approximations instead of directly observing them.
For example, in our project, the water level of a plant is
approximated and calculated from the overall amount of water
in the system and measurable water levels. The reliability of
such approximations needs to be verified before using them
in critical optimization and control scenarios.

Challenge 5: Interference with operation creates noise.
Human staff is in frequent interactions with the physical twin.
The impact of these interactions on the system ranges from
negligible (i.e., safe to omit in the model) to severe (i.e.,
might render models invalid unless explicitly represented in
the models). We consider activities, such as measurement and
regular oversight negligible interference. However, typical to
CEA settings, the biotic subsystem is continuously modified
as ripe strawberries need to be harvested.
We recommend integration with planning systems at partner
companies that contain information about the work schedules
of staff and planned interactions to be factored into simula-
tions. However, acquiring such data might be problematic from
accuracy, confidentiality, and legal points of view. In the lack
of such data, simulators might have to be calibrated on data
that inherently features noise.

B. Models and simulators need to be constructed (R2)

Challenge 6: Tool-independent modeling languages are
missing. The lack of modeling languages to support
conceptualization and design activities is one of the major
blockers of efficient collaboration. While there exist domain-
specific modeling tools for agriculture (e.g., APSIM [42]
and L-system [43]), modeling languages are tied to these
tools. Furthermore, “modeling” is often interpreted as mere
mathematical formulation of basic physical and biological
principles, e.g., through differential equations. Such low-level
formal systems do not help narrow the cognitive gap between
experts and the problems at hand as much as MDE does.
We recommend taking a proactive standpoint and evangelizing
MDE principles early on. The ability to use modeling lan-
guages is especially crucial in the phase of developing runtime
models and simulators of digital twins, but benefits can be
observed as early as the conceptualization phase.

Challenge 7: Gap between stakeholders is wider than
that in CPS. Biology and engineering domains are drastically
different domains. The resulting disparate vocabularies and the
previously discussed lack of tool-independent modeling lan-
guages render the elicitation of expert knowledge challenging.
MDE researchers are particularly well-positioned to facili-
tate mutual understanding and collaboration. We recommend
adopting advanced modeling and reasoning techniques for
bridging the gap between distant domains, such as introducing
domain-specific modeling languages (DSML) [44] and onto-
logical reasoning [45]. Both techniques have been successfully
applied in traditional CPS and suggest improved returns on
investment settings with distanced domains, such as CBPS



subject to digital twinning. Furthermore, we advocate intro-
ducing open-ended and non-time-boxed socialization activities
between modeling experts and domain experts based on the
SECI model [46]. We dedicated a researcher with a computer
science background to regular open-ended work discussions
with the agronomy expert. Instead of eliciting domain knowl-
edge directly into simulation schemes, the researcher spent
multiple weeks with the expert mapping his knowledge. Even-
tually, the researcher developed his own tacit knowledge which
he was able to externalize as simulation models.

Challenge 8: Factual knowledge and untested hypotheses
are often not clearly separated. Due to the highly empirical
nature of knowledge creation, hypothesis testing is the typical
way to build knowledge. We found that often, factual knowl-
edge (tested and proven hypotheses) and untested claims are
not clearly separated. Invalid assumptions hinder the creation
of faithful models and might render models unusable.
We recommend separating tested and untested hypotheses in
collaboration with experts. We organized workshops with the
experts to elicit a map of concepts using the i* concept model-
ing language [47]. By that, we were able to isolate knowledge
that is rooted in well-tested facts (mostly on the engineering
side) from that rooted in weaker empirical evidence (mostly
on the agronomy side).

Challenge 9: Manual model construction is not feasible.
Due to the complexity of systems subject to digital twinning,
manual model construction is inefficient and often not feasible.
The process of constructing models is hindered by the black-
box nature of biological systems, a source of substantial
accidental complexity. Empirical models are often used to
approximate the transfer function of biological systems by
input-output characteristics. However, trial-and-error experi-
ments required for such empirical models are costly and often
suffer from repeatability and generalizability issues.
We recommend the automation of model construction. We
found success with automated simulator construction by
ML [48], [49], but other techniques—e.g., statistical infer-
ence [50]—are readily available as well.

Challenge 10: Reusability of models is challenged by
the extensive variety of genera. Developing models for
one genus comes with elevated threats to external validity and
with the expectation that the developed model will not work
for different plant species and cultivars. For example, in our
project, strawberry models were particularly hard to obtain.
Alternative crop growth models have been proposed, e.g., for
tomatoes [51], but the majority of principles are crop-specific.
We recommend developing domain ontologies to organize and
share knowledge [52]. The open-world assumption of ontolo-
gies allows for integrating new knowledge when it becomes
available. Under more traditional closed-world assumptions,
modeling frames [53] could be considered to explicitly capture
the validity conditions of models.

C. Actuation autonomy needs to be flexible (R3)

Challenge 11: The lack of explainability limits autonomy
potential. Safety concerns related to biological entities limit

the autonomy of digital twins. By gradually gaining trust in
their safety and efficiency, operators can give increasingly
more autonomy to digital twins. In line with the observations
of Bradshaw et al. [54], we observed that the explainability of
the digital twin’s behavior is paramount in improving stake-
holder trust and accelerating convergence to higher autonomy.
We suggest researchers investigate the broader context of
explainability, recently researched in great detail in ML and
AI [55]. We see the involvement of the human in the
configuration space exploration process as a promising aid
of understanding, underlining the need for human-machine
cooperative techniques recommended by Bradshaw et al. [54].

Challenge 12: Full autonomy is hard to achieve. While
domain experts were reluctant to commit to fully autonomous
actuation, they were permissive in specific cases. These ser-
vices tend to have no direct safety impact on the biotic subsys-
tem. For example, automated hazard detection and actuation
appeared as an early tentative candidate feature.
We recommend seeking partial autonomy scenarios in col-
laboration with decision-makers. Such efforts improve the
acceptance of the digital twin. For example, stakeholders are
likely to re-evaluate safety concerns when the digital twin
demonstrates utility in hazardous situations. Identifying such
negative scenarios allowed us to elicit additional usage scenar-
ios in which the digital twin could operate autonomously. We
recommend breaking down the working of the digital twin into
usage scenarios and linking those scenarios with conceptual
autonomy levels. However, such roadmapping exercises should
be carried out carefully and should consider that perceived
levels of autonomy are specific to the particular context [54].

Challenge 13: Fidelity considerations of conventional
CPS do not apply. In our setting, fidelity concerns were
substantially impacted by the delays in sensor data and manual
data. At best, our real-time data stream consisted of sensor
samplings in the order of magnitude of minutes. Such limita-
tions in fidelity might have severe impacts on the actuation
performance of the digital twin. Although such limitations
would be unacceptable for the majority of CPS (e.g., in the
control of a production line), we found slower sensing works
well for biophysical settings. This is due to the relatively slow
rate of change of biological entities. However, accuracy and
precision issues still limit reasoning about the physical twin.
We advocate surveying the fidelity characteristics of CBPS to
better scope the capabilities of digital twins. We recommend
encoding such knowledge in domain ontologies for automated
reasoning in digital twinning scenarios.

VI. LESSONS LEARNED

In this section, we summarize some lessons learned about
modeling activities and associated processes.

A. Modeling aspects

From domain-specific to domain-augmented languages.
We observed that the lack of effective modeling languages
motivated domain experts to craft their own informal DSLs
to communicate ideas. For example, a graphical language



rooted in causal block diagram semantics [56] and augmented
with domain-specific visual elements was regularly used by
an engineering expert to communicate simulation scenarios
Ferme d’Hiver wished to support with the digital twin. Due
to the lack of formal abstract syntax and semantics, these
languages cannot be considered domain-specific languages per
se, but it is important to recognize that they were sufficient in
communicating elaborate concepts and ideas and serve as an
excellent starting point for DSL engineering.

We encourage supporting complex digitalization endeavors
in such heterogeneous settings with proper engineering support
for DSL prototyping and maintenance. Such mechanisms aid
the externalization of domain knowledge, and in turn, accel-
erate the development process of digital twins. Furthermore,
these languages can serve as the visual front-end of digital
twin dashboards to interact with the deployed digital twin.

Collaborative model-based reasoning is a crucial en-
abler. Reflecting the bipartite nature of CBPS, optimality
criteria of configurations tend to comprise cyber-physical and
biological KPIs. We observed that such complex optimization
scenarios are approached in a collaborative fashion. Engineers
and agronomy experts express their configuration preferences
and try to communicate through boundary objects [57], i.e.,
shared units of understanding, such as energy concepts.
We recommend automating such reasoning mechanisms, e.g.,
by facilitating design-space exploration [58] with multiple
views on the design space and collaborative mechanisms [59].

Data-driven techniques offer limited upside for inferring
parts of the digital twin (e.g., simulators or models) based on
historical often provide limited upside. Safety considerations
force experts to over-dimension their safety margins and
ensure safe configurations as much as the system permits.
Furthermore, systems in production context are configured
based on what is known to provide adequate results to the best
of the operator’s knowledge, allowing little to no possibility to
test alternative configurations. Thus, historical data is biased
towards these safe settings, and data outside of safe settings
cannot be obtained. However, historical data might still be
useful for calibration purposes.

B. Process aspects (CI/CD, DevOps)

Instrumentation of the physical twin is to be addressed
early on. The instrumentation of the physical twin might
not be suitable for digital twinning, severely limiting the
digital twin in fulfilling the goals of stakeholders. Although
we started working with an already instrumented system, we
identified its limitations early on and started working in an
inclusive cooperation on planning improvements and acquiring
sensors and actuators. As a result, the IoT infrastructure has
substantially evolved. In some cases, corporate procurement
policies might pose problems, further necessitating an early
treatment of such issues.

Testability and calibration are challenged by safety con-
siderations (of crops) limiting interactions with the physical
twin. Since simulators need to be calibrated for a specific
environment and need to be regularly re-calibrated to maintain

a proper frame of validity [53], establishing testbeds for
validation and testing purposes does not mitigate the need for
interacting with the physical twin.

Frequent refactorings necessitate proper test coverage.
We implemented the digital twin in Python, mostly relying on
open-source libraries and frameworks. Due to the functional
and architectural impacts of newly encountered requirements,
refactorings were frequent throughout the entirety of the
development. We observed more architectural changes in the
early stages of the development and fewer as we reached the
delivery phase of the development cycle. Proper test coverage
proved to be crucial in maintaining the pace of development
and the ability to react to changing needs.

Early and frequent user acceptance testing is crucial
in ensuring rapid convergence to actual business goals. Even
though the users of the digital twin are not technical users, they
are still considered power users with a high digital aptitude
and the ability to tell useful digital facilities from less useful
ones. Thus, user acceptance testing can generate value from
the early stages of development until late in the maintenance
and continuous improvement phase.

Deployment and operation might require active support.
Since a digital twinning project might be the first advanced
digital endeavor at a company primarily focusing on biological
and biophysical systems, deployment becomes an issue. Archi-
tectural choices might be suboptimal for digital twinning. We
observed that security and availability considerations render
even relatively trivial decisions problematic—e.g., deciding
between on-premises and cloud environments. Compatibility
with existing production systems and compliance with inter-
nal standards are additional aspects to be considered when
preparing for the deployment of a digital twin.

VII. RELATED WORK

While digital twinning of engineered systems has well-
documented applications, digital twinning of biological sys-
tems is still in an early phase.

Pylianidis et al. [60] review 28 case studies of digital twins
in agriculture, but note that most solutions never made it
past the prototype stage. Digital twins that are eventually
deployed in real settings focus on the monitoring aspects of
the greenhouse or farm, rather than providing computer-aided
decision support or control. In addition, the sampled digital
twins did not attempt the twinning of biological entities. This
is in stark contrast with our approach, in which the biophysical
model captures the prevalent state of the plants. Similar to
our setting, Chaux et al. [20] developed a digital twin of
a greenhouse with environment control and crop treatment
strategies. However, the digital twin has been implemented
in a miniature-scale prototype greenhouse and has not been
deployed in a real setting. In contrast, our work was situated
in a real industry context. This allowed us to assess the
imperfections of real industry settings that challenge or even
limit the development of digital twins for CBPS. Alves et
al. [61] developed a digital twin for farmers to understand the
state of their farms with respect to resource and equipment



utilization. The twin is able to collect data from a soil sensor
and display the information on a dashboard. However, no
computer-aided decision-making or reasoning is provided by
the digital twin, limiting the insights expert stakeholders can
gain from it. Skobelev et al. [62] note that current digital
twins of plants are not adequate for decision-making support
as agricultural models fail to capture the variability of plant
growth dynamics within different environments. To address
this issue, they propose modeling the phases of plant devel-
opment and their relations and using this underlying model to
support decision-making. The approach is operationalized as
a digital twin. However, it focuses only on biological entities
and does not support reasoning about physical counterparts.

In the broader sense of biological systems, digital twin-
ning has been a topic of particular interest in healthcare.
Most of these works emphasize modeling and computational
challenges that translate to other biological systems as well.
Gerach et al. [10] developed a complex physics-based model
of the heart with the intent of creating a heart digital twin
and highlighting the need for complex mechanistic models to
build such systems. To speed up the computation required to
detect heart diseases, Martinez-Velazquez et al. [63] propose
an edge-computing architecture for digital twins. Biancolini
et al. [64] find a trade-off between computational complexity
and real-time constraints in the context of modeling and
simulation of blood vessels by fluid dynamics. The challenges
and solutions outlined in the healthcare domain translate well
to general biophysical digital twinning cases and align with
our experiences gained in the CEA domain.

Digital twinning has enjoyed more rapid and widespread
adoption in engineered systems, such as cyber-physical sys-
tems [65], and is recognized as key enablers to modern indus-
try practices [66]. Similar to our simulation-based approach
but situated in Industry 4.0 settings, Schluse et al. [37] define
experimentable digital twins (EDT) that allow for what-if
analysis of the physical system through simulation. Eisenberg
et al. [67] use such EDT in support of reactive planning by
model-based optimization. The EDT, in their case, is used
for simulating how the physical system would look at a
specific point in time, under specific plans. Similar avenues
have been explored by Barat et al. [68] who use digital twins
as a risk-free experimentation aid for complex techno-socio-
economic systems. Nonetheless, challenges in building faithful
physical models have been demonstrated in numerous cases.
Govindasamy et al. [69] note that the effort needed to integrate
physical simulations for complex systems is enormous if
carried out manually and recommend automation. However,
testing causality, one of the key challenges in BPS, has been
shown to be feasible in CPS by Somers et al. [70].

VIII. CONCLUSION

In this paper, we reported the challenges and lessons learned
from a real, industry-scale digital twinning project in the
biophysical domain, through a specific case of controlled en-
vironment agriculture. In addition, we discussed some lessons
learned related to modeling activities and associated processes.

The main conclusion of our project is that the digital ca-
pabilities in sectors associated with CBPS—such as CEA and
vertical farming—are moderate compared to sectors associated
with CPS, such as automotive, and avionics. The relative un-
derdevelopment of digital capabilities is manifested in lacking
equipment, resources, and expert manpower, particularly from
modeling, systems engineering, and data management per-
spectives. However, CEA and similar sectors are experiencing
a rapid digital transformation [71], [72], indicating elevated
future interest in advanced digital capabilities, such as digital
twinning. To be able to efficiently support these sectors, the
modeling community must take a proactive role, evangelize
solutions with a proven track record in CPS, and aid partner
organizations in their digital transformation journey. To this
end, our paper supports researchers and practitioners with
high-value-added industry takeaways.

The challenges we collectively overcame during the reported
digital twinning endeavor impacted Ferme d’Hiver at technical
and strategic levels. The data quality requirements imposed by
the digital twin were addressed by improving data collection
and management capabilities at the company. These efforts in-
cluded improving the low-level sensor infrastructure, adopting
solutions that are not tied into vertical technological siloes, and
identifying advanced analytics scenarios based on improved
data quality and quantity. At a strategic level, this project also
helped the company to develop efficient ways to cooperate
with (current and prospective) academic partners, and leverage
synergies more efficiently. Eventually, the company launched
internal research initiatives augmenting our research, fostering
a true multi-disciplinary research setting.

The digital twin is currently in use through human actuation
due to the elevated safety concerns pertaining to biologi-
cal components. A human-actuated digital twin is different
from what some authors call a “Digital Shadow” [13]: our
digital twin provides actuation instructions, but the actuation
is carried out by human stakeholders who can confirm that
safety criteria are met. Throughout the project, we have been
gradually shifting towards more autonomous digital twins. We
achieved this by frequent prototyping and by keeping key
stakeholders involved. We are continuously working on the
digital twin for calibration and execution time optimization.
Currently, the digital twin is at the prototype stage fully used
in the experimentation lab of the farm.

Future work will focus on developing advanced digital
capabilities built on top of the digital twin. Specifically,
human-guided design-space exploration and human-machine
collaborative optimization will be researched in the near
future. We plan to map our conceptual framework onto well-
established standards for digital twins in traditional manufac-
turing domains, such as ISO 23247-1:2021 [73], [74].
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Á. Hegedüs, and Á. Horváth, “Multi-objective optimization in rule-
based design space exploration,” in ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, Vasteras, Sweden, 2014.
ACM, 2014, pp. 289–300.

[59] I. David, K. Aslam, I. Malavolta, and P. Lago, “Collaborative
model-driven software engineering - A systematic survey of practices
and needs in industry,” J. Syst. Softw., vol. 199, p. 111626, 2023.
[Online]. Available: https://doi.org/10.1016/j.jss.2023.111626

[60] C. Pylianidis, S. A. Osinga, and I. N. Athanasiadis, “Introducing digital
twins to agriculture,” Comput. Electron. Agric., vol. 184, p. 105942,
2021.

[61] R. G. Alves, G. Souza, R. F. Maia, A. L. H. Tran, C. Kamienski,
J. Soininen, P. T. Aquino, and F. Lima, “A digital twin for smart
farming,” in IEEE Global Humanitarian Technology Conference, GHTC
2019, Seattle, WA, USA, October 17-20, 2019. IEEE, 2019, pp. 1–4.

[62] P. Skobelev, V. Laryukhin, E. Simonova, O. Goryanin, V. Yalovenko,
and O. Yalovenko, “Developing a smart cyber-physical system based
on digital twins of plants,” in 2020 Fourth World Conference on Smart
Trends in Systems, Security and Sustainability, 2020, pp. 522–527.

[63] R. Martinez-Velazquez, R. Gamez, and A. El Saddik, “Cardio twin: A
digital twin of the human heart running on the edge,” in 2019 IEEE
International Symposium on Medical Measurements and Applications
(MeMeA), 2019, pp. 1–6.

[64] M. E. Biancolini, K. Capellini, E. Costa, C. Groth, and S. Celi, “Fast
interactive cfd evaluation of hemodynamics assisted by rbf mesh morph-
ing and reduced order models: the case of ataa modelling,” International
Journal on Interactive Design and Manufacturing (IJIDeM), vol. 14,
no. 4, pp. 1227–1238, 2020.

[65] P. Carreira, V. Amaral, and H. Vangheluwe, Eds., Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems. Springer International
Publishing, 2020.

[66] S. Braun, M. Dalibor, N. Jansen, M. Jarke, I. Koren, C. Quix, B. Rumpe,
M. Wimmer, and A. Wortmann, Engineering Digital Twins and Digital
Shadows as Key Enablers for Industry 4.0. Springer Berlin Heidelberg,
2023, pp. 3–31.

[67] M. Eisenberg, D. Lehner, R. Sindelár, and M. Wimmer, “Towards
reactive planning with digital twins and model-driven optimization,” in
Leveraging Applications of Formal Methods, Verification and Validation.
Practice - 11th International Symposium, ISoLA 2022, Rhodes, Greece,
October 22-30, 2022, Proceedings, Part IV, ser. LNCS, vol. 13704.
Springer, 2022, pp. 54–70.

[68] S. Barat, V. Kulkarni, T. Clark, and B. Barn, “Digital twin as risk-free
experimentation aid for techno-socio-economic systems,” in Proceedings
of the 25th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2022, Montreal, Quebec, Canada,
October 23-28, 2022. ACM, 2022, pp. 66–75.

[69] H. S. Govindasamy, R. Jayaraman, B. Taspinar, D. Lehner, and M. Wim-
mer, “Air quality management: An exemplar for model-driven digital
twin engineering,” in ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS
2021 Companion, Fukuoka, Japan, October 10-15, 2021. IEEE, 2021,
pp. 229–232.

[70] R. J. Somers, A. G. Clark, N. Walkinshaw, and R. M. Hierons, “Reliable
counterparts: efficiently testing causal relationships in digital twins,” in
Proceedings of the 25th International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings, MODELS
2022, Montreal, Quebec, Canada, October 23-28, 2022. ACM, 2022,
pp. 468–472.
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