
SusDevOps: Promoting Sustainability to a First
Principle in Software Engineering
Author: Istvan David (McMaster University, Canada)

ABSTRACT
Sustainability is becoming a key property of modern software systems. While there is a
substantial and growing body of knowledge on engineering sustainable software, end-to-end
frameworks that situate sustainability-related activities within the software delivery lifecycle are
missing. In this article, we propose the SusDevOps framework that promotes sustainability to a
first principle within a DevOps context. We demonstrate the lifecycle phases and techniques of
SusDevOps through the case of a software development startup company.

Actionable insights software practitioners will get from this article:
● Understanding how and when sustainability practice interfaces with software development and
operation is key to the efficient delivery of sustainable software. The SusDevOps framework situates
these three practices with respect to each other.

● Feedback from operation should be processed through models and KPIs of sustainability, from which
requirements are derived to implement the right trade-off between technical and sustainability goals.
The SusDevOps lifecycle model aligns these concerns with the traditional DevOps process.

● While we use a simplified case to demonstrate the utility of the SusDevOps framework, it can
accommodate a wide range of sustainability-related goals and KPIs.

1. Introduction
Estimates show that the Information and Communications Technology (ICT) sector currently
contributes to about 2–4% of global CO2 emissions and this number is projected to increase to
about 14% by 2040 [1]. To follow suit with the rest of the global economy, the ICT sector
should—directly or indirectly—decrease its CO2 emissions by 42% by 2030, 72% by 2040, and
91% by 2050.1

These numbers must concern software practitioners for a number of reasons.

First, the nature of user requirements is changing. While sustainability-related user requirements
are not quite mainstream currently, sustainability is shaping up to become the non-functional
requirement of the 21st century [2]. The expectation that users and organizations will not only
reward but demand efforts toward sustainability has been identified as the top “global
megatrend” by the International Council on Systems Engineering (INCOSE) recently2,

2 https://www.incose.org/publications/se-vision-2035

1

https://www.itu.int/en/mediacentre/Pages/PR04-2020-ICT-industry-to-reduce-greenhouse-gas-emissions-
by-45-percent-by-2030.aspx

https://www.incose.org/publications/se-vision-2035
https://www.itu.int/en/mediacentre/Pages/PR04-2020-ICT-industry-to-reduce-greenhouse-gas-emissions-by-45-percent-by-2030.aspx
https://www.itu.int/en/mediacentre/Pages/PR04-2020-ICT-industry-to-reduce-greenhouse-gas-emissions-by-45-percent-by-2030.aspx

necessitating a radically new approach to the engineering of software and software-intensive
systems.
Second, even if a software company embraces the idea of developing sustainable software, the
lack of software delivery frameworks that can accommodate sustainability goals quickly
becomes a show-stopper. It is not easy to relate software functionality to sustainability goals
along a software development lifecycle. When should sustainability requirements be
addressed? How should they be prioritized? What techniques and tools can be used in support
of systematic decision-making?

There is a substantial and rapidly growing body of knowledge on engineering sustainable
software, with high-quality and actionable methods and techniques [3, 4]. This body of
knowledge is ready to be put to use. To achieve this, we need end-to-end frameworks that
promote sustainability to a first principle, instead of treating it as a quality metric.

In this article, we propose such a framework, called SusDevOps. As the name suggests,
SusDevOps builds on the established software development and operations practices of
DevOps [5] and aligns sustainability practices (“Sus”) with them. The framework defines a
holistic software development lifecycle model to weave these concerns into a coherent unit.

Sidebar – DEVOPS

DevOps [5] is the collection of values, principles, practices, and tools that narrows the gap
between developing (“Dev”) and operating (“Ops”) software systems. By promoting rapid
iterative and incremental practices, DevOps increases the efficiency of delivery. While
terminology is not standardized, the main stages of DevOps are well-understood by
practitioners. These stages are the following.
PLAN. This stage includes the definition of process metrics for management and the definition
of technical requirements for the software.
CREATE (or CODE). Development of the software system.
VERIFY (or TEST). Quality assurance, testing, validation, and verification.
PACKAGE. Package configuration, release staging, and release approvals.
RELEASE. Moving the software into production, including coordination, fallbacks, and
recovery.
CONFIGURE. Preparation and provisioning of the infrastructure that hosts the software
service.
MONITOR. Keeping track of functional and non-functional metrics, such as performance,
response time, resource utilization, and end-user experience.
Feedback from monitoring is considered in the next planning phase of the next deliverable.

The original principles of DevOps are nowadays widely adopted, and different augmentations
have been developed to extend the scope of DevOps. Such augmented approaches include
DevSecOps [6], which emphasizes security (“Sec”) in the software delivery process;
BizDevOps [7], which focuses on connecting business operations (“Biz”) to software delivery;
and most recently, MLOps [8], that applies DevOps principles to machine learning (“ML”).

We aim to provide useful information to at least three groups of practitioners. Software
engineers who wish to anticipate how sustainability skills will disrupt their current practice so
that they can anticipate the skills required for modern software engineering. Architects and
product owners, and other principal designers and owners of delivery processes, so that they
can understand how to extend delivery processes to incorporate activities that support
sustainability ambitions. And decision-makers who identified the need for sustainability and are
looking to revamp their operations for sustainability-first software practices.

Sidebar – SOFTWARE SUSTAINABILITY

Sustainability is usually characterized by three complementary dimensions, first defined in the
Brundtland report.3 Economic sustainability is concerned with the financial viability of a
software product; environmental sustainability focuses on reduced ecological impact, such as
energy consumption; and social sustainability promotes the elevated utility of software for
humans. Penzenstadler and Femmer [9] define a fourth dimension, technical sustainability,
focusing on the prolonged service time of software systems, chiefly supported by proper
evolution methods. All of these four dimensions must be considered to achieve sustainability
in software systems.
Software engineers and practitioners are typically focused on technical sustainability, i.e.,
evolvability and maintainability, as these concerns are closest to software code and decisions
can be made in the scope of a software engineer’s scope of authority [10]. However, there is
an emerging awareness of environmental sustainability, such as the energy consumption of
software, as resource-intensive methods, such as blockchain and large-scale machine
learning become parts of modern software systems. Tools and methods in support of energy
assessment of software [11] and energy-aware design are increasingly easier to incorporate
into everyday software engineering practices.

2. The SusDevOps framework
SusDevOps is a software delivery framework that treats sustainability as a first principle of
software. As the name suggests, the framework builds on well-established DevOps practices of
integrated software development (“Dev”) and software operation (“Ops”) and extends them with
the practice of sustainability (“Sus”). To keep software delivery agile despite the distinguished
role of sustainability, SusDevOps defines a lifecycle model (Figure 1) that integrates
sustainability-related activities with the software development and delivery activities of traditional
DevOps.

In SusDevOps, sustainability is not a metric anymore, it is a goal that drives product design and
delivery. This is an important improvement over current software delivery frameworks. For
example, in traditional DevOps, sustainability is approached as a quality metric of the software
[4]; and while BizDevOps [7] improves over this by treating sustainability as a business goal
rather than a technical quality metric, it fails to connect sustainability to software requirements.

3 https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf

https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf

Figure 1: The SusDevOps framework.

The key sustainability-related activities of SusDevOps are the following.
● Align goals. First, sustainability goals are formulated based on the feedback from

operations and are aligned with the goals of the product. Sustainability goals are more
often contradicting than technical requirements and the resolution of these contradictions
requires a dedicated activity. This requires a holistic, system-level view, as sustainability
goals touch upon technical aspects and business operations as well. In the case study,
for example, environmental sustainability was articulated as a key expectation from the
users. Aligning it with the technical parameters of the software is not trivial and requires
understanding the impact environmentally-friendly software design has on functional and
extra-functional properties.

● Choose KPIs. After sustainability goals have been articulated, they need to be properly
underpinned by measurable key performance indicators (KPIs). KPIs are indicators
focusing on the aspects of software systems that are most critical for the success of the
company [12]. However, establishing the right KPIs is challenging. In a recent article,
Fatima et al. [13] elaborate in detail on these problems and provide practitioners with a
template-based tool. In the case study, CO2 emission has been chosen as a heuristic for
environmental sustainability. This can be now tied to the energy consumption of the
software.

● Prioritize goals. Finally, priorities among goals are set. Typically, companies will face
trade-off questions between sustainability and revenue, performance, etc. Dedicating a
specific step to resolve these questions is necessitated by the potential involvement of
higher-level decision-makers.

Some of the important benefits of the SusDevOps framework are the following.
● End-to-end understanding. The framework aligns elementary software delivery

activities with sustainability activities. This allows stakeholders along the software
delivery process (including IT departments) to understand when and how to deal with
sustainability, what input to gather for sustainability-related decision-making, and which
sustainability goals to translate to software requirements.

● Actionability. The framework defines activities for the sustainability practice, and for
each activity, it recommends techniques and tools. This lowers the barriers to adopting
SusDevOps and simplifies aligning it with business processes.

● Agility. The framework promotes systematic yet rapid sustainability-related
decision-making in the iterative-incremental DevOps context. This allows for reacting to
change—which is very much pronounced in end-user sustainability requirements—more
efficiently.

The sequential alignment of the Sus and Dev practices might challenge the agility of
SusDevOps. The guiding principle of SusDevOps is that requirements are first investigated
through the filter of sustainability before reflecting on their technical aspects. These ideas have
been recognized in sustainable software engineering, especially in the context of requirements
elicitation, e.g., by Becker et al. [14]. Promoting sustainability to such a prominent position, and
treating it as a principle practice along with development and operations, fosters a culture shift
in which new techniques and tools in support of delivering sustainable software emerge
naturally. Iterations between the Sus and Dev practices before releasing the product might be
still introduced if needed, just like iterations are frequent in the Dev phase in traditional DevOps
before releasing the product.

In the following, we demonstrate the sustainability-related activities of the framework through an
illustrative case.

3. Illustrative case
We use the example of a software development startup company to illustrate the usage of the
SusDevOps framework in a typical business-to-consumer (B2C) setting.
The company develops a software product of which the key feature is high-precision simulation
driven by pre-trained AI models. User satisfaction is mainly influenced by the precision of the
product. Being a startup, the company uses the majority of their revenue to regularly improve
their computing capacity to provide better precision through better-trained AI models.
After the user base grew large enough, the company noticed that user satisfaction is also
influenced by the perceived environmental sustainability of the software, such as energy
efficiency. Given the B2C model, revenue might be significantly impacted by emerging user
needs, leading to less liquidity to improve the product.

The main challenge in this case is to stay agile in the delivery process, that is, to maintain the
right velocity while reacting to sustainability needs as they emerge. These needs have to be
assessed systematically, trade-offs between technical and sustainability goals need to be

identified, those trade-offs have to be mapped onto the functionality of the software through
requirements, etc. Traditional software engineering delivery processes might struggle to handle
this challenge efficiently due to the convoluted and vague notion of sustainability.

However, these challenges can be addressed through a number of activities along the lifecycle
defined by the SusDevOps framework. In the following, we briefly demonstrate these activities.

Monitor (Ops) and Feedback (Ops-to-Sus)
Monitoring is a DevOps activity that helps keep track of functional and non-functional metrics. In
SusDevOps, this activity also includes keeping track of sustainability properties (e.g., the energy
consumption of software), as well as the satisfaction of end-users. In anticipation of emerging
sustainability-related needs of users, companies can run market studies and use the feedback
functionality of applications to gather valuable leads. In our case, a market study finds that users
value perceived sustainability highly.

This information is fed back to the development team to support the planning of the next
release.

Align goals
In the first sustainability activity, goals are formulated based on the feedback and are aligned
with the goals of the product. Causal loop diagrams (CLD) are an appropriate formalism to
capture system dynamics. A practical and accessible overview of using CLDs in software
engineering has been provided by Penzenstadler et al. [3].
As the name suggests, CLDs aim to visualize the causal relationships between system
variables. System variables might influence each other through positive or negative causal
loops, meaning that two variables change in the same or opposite direction, respectively.
Figure 2a shows the original system before feedback. Precision is a key influencing factor of
User satisfaction: the higher the precision, the higher the user satisfaction. This causal
relationship is shown by the link between the variables denoted by a + sign. By the same logic,
higher User satisfaction leads to higher Revenue which, in turn, allows the company to further
increase the Precision of the software. This leads to a reinforcing loop (denoted by “R”) of
Technical performance. Reinforcing loops are associated with exponential increases and
decreases—in this case, with a rapid increase in revenue. Of course, hardware limitations and
market saturation keep the system in check, and variables plateau at some point.

Aligning the new goal means adding Perceived sustainability to the system in order to form
loops in later steps. Perceived sustainability positively influences User satisfaction. To form
loops and to further detail the diagram, we need more detailed variables.

Choose KPIs
After the new goal has been articulated, it has to be properly elaborated by choosing the right
KPIs. KPIs are indicators focusing on the aspects of software systems that are most critical for
the success of the company [12]. However, establishing the right KPIs is challenging. In a recent
article, Fatima et al. [13] elaborate in detail on these problems and provide practitioners with a
template-based tool.
In our case, Figure 2b is extended by two KPIs, shown in Figure 2c. To approximate
environmental sustainability, the CO2 emission of computation is used as a KPI. CO2 emission
impacts perceived sustainability negatively, hence, a negative relationship is drawn in the causal
loop diagram. To approximate precision, the number of floating-point operations (FPO) can be
used as a KPI. Common choices are the cumulative energy consumption and cumulative power
consumption of computation as well, but the relationship between energy, power, and run time is
ambiguous. Power (SI-unit: watts) is the amount of work (SI-unit: joules) over time. Very
simplistically, we say power = work / time. Conversely, energy = power × time. Reducing
computational resources results in lower power consumption, but prolongs computation time;
thus, due to the latter equation, the change in energy is unclear. Adding more resources to
reduce computation time will result in shorter computation time but higher power consumption
and again, the change in energy is unclear. FPO calculates the amount of work needed for
computation directly and is thus tied to the amount of energy consumed [15], and in the long
term, to CO2 emissions required to produce this energy. This now allows for establishing two
new links.

First, the link between Revenue and Precision is replaced by a link between Revenue to FPO,
and FPO to Precision. The effect of influences does not change, as every link remains a positive
causal link: with higher revenue, the company can afford more FPOs, leading to higher
precision, and increasing user satisfaction which, in turn, leads to increased revenue—forming a
reinforcement loop. Second, a new link is placed between FPO and CO2 emission. The link is a
positive causal link: the higher the FPO, the higher the CO2 emissions are. This now forms a
new balancing loop (denoted by “B”). That is, with the increasing CO2 emission, Perceived
sustainability decreases, eventually leading to lower Revenue, lower number of FPOs, and
lower CO2 emissions. Eventually, the loop will find a balance among the variables and stabilize.

(a) Original understanding before feedback.

(b) Updated understanding after feedback.

(c) New KPIs (FPO and CO2 emission) and new links forming a new loop.
Figure 2. Evolving understanding of sustainability factors visualized in a causal loop diagram as

the chosen tool in this case study.

Prioritize
In the final activity of the sustainability practice of SusDevOps, priorities among goals are set.
The company faces an important question: what is the right trade-off between precision and
perceived sustainability? This question emerged solely because the previous activity identified a
balancing loop in the system. From Figure 2c we know that both precision and CO2 emissions
can be expressed in relation to the number of FPOs a computation requires to achieve its goals.
The challenge is that parameter sensitivity between precision and CO2 emission is not known
unless empirical data is collected first. In alternative terms, it is not known how much precision
and CO2 emission will decrease by a unit of decrease of FPO. Evidence from the AI domain
[15] suggests that by just sacrificing 0.5% of precision, FPO can decrease by as much as
30-35%. It is still not entirely clear how this decrease in FPO will impact CO2 emissions, but
surely, it is a step in the right direction. Further experiments can shed light on this relationship in
the context of the specific software product.

Factors that commonly influence prioritization are user needs, business goals, corporate values,
and in some cases, laws and regulations. Specifically, corporate values influence the leverage
point a company chooses to influence the ecosystem their software product is a part of. For
example, following the leverage point clusters of Penzenstadler et al. [3], a company might not
even wait for emerging user needs, but take a proactive stance and choose the highest
leverage points to change the intent of the system and stakeholders. This could be achieved by

raising sustainability awareness, for example, through gamification that rewards more
energy-efficient usage of the software.

Plan (Sus-to-Dev)
To conclude the sustainability-focused part of the SusDevOps process, plans are formulated
based on aligned, elaborated, and prioritized goals. In a typical software engineering setting,
this mainly means formulating requirements or change requests for the software [15]. This
activity also includes formulating engagement plans with users to advocate change and bring
users on board with the new, more sustainable product.

Eventually, the cycle is completed with the traditional DevOps activities of software development
and operation.

4. Challenges in adopting SusDevOps
Here are some of the key challenges practitioners should anticipate when adopting SusDevOps.

● Proper Monitoring and Feedback mechanisms should be identified. The lack of
proper mechanisms to gauge end-users’ sustainability needs challenges the agility of the
delivery process. This might slow down the software delivery process and threaten user
privacy. In B2B settings, this challenge can be addressed by the product owner working
closely with clients. B2C settings, however, might necessitate innovative ways to engage
with users.

● New competencies need to be developed. While sustainability expertise might be
brought in as a service, it is more sustainable for a company to develop internal skills.
This entails expanding the skillsets of business analysts, product owners, and software
engineers with the foundational concepts, models, techniques, and tools that help along
the sustainability practice of SusDevOps. In the case study, each sustainability-related
step was executed by these internal professionals.

● Stakeholder buy-in is paramount. As sustainability transcends the software’s purpose
[14], it requires active support from all stakeholders in a company. However, the highly
stratified nature of sustainability (i.e., having different meanings at different levels of
organizational hierarchy) challenges such efforts. To simplify this challenge, Becker et al.
[14] recommend minimizing the number of involved stakeholders in sustainability
decisions and focusing on those who have influence.

● Knowledge management is key. Sustainability goals are inherently interdisciplinary
and multisystemic: their sound interpretation is possible only by investigating them from
multiple angles. Even the simple illustrative case in this article touched upon business
goals, technical goals, and environmental goals. Thus, facilitating processes to
continuously maintain the map of sustainability goals is key to having the proper
understanding of the sustainability of the developed software within its extended
socio-technical context.

● Watch out for accidental greenwashing. Greenwashing is the deceptive strategy of
magnifying a company’s sustainability efforts. Greenwashing can be accidental too, for
example, by focusing on a single environmental attribute while ignoring others.4

Understanding sustainability goals and their alignment with the overall product strategy,
and subsequently choosing the right KPIs is a key moment in making sound
sustainability decisions and by that, avoiding accidental greenwashing. In a recent
article, Fatima et al. [13] provide actionable pointers and a template-based tool for
developing KPIs. It is important that adopters of SusDevOps embrace continual
improvement. Especially in convoluted problems, such as the sustainability of software,
the best KPIs can be developed over time.

To help address these challenges, Table 1 provides examples of techniques and tools in support
of SusDevOps.

Table 1. Techniques and example tools in support of the
Sustainability practice of SusDevOps.

Activity Techniques Example tools

Monitor and Feedback User surveys, focus group interviews Built-in survey functionality

Align goals System dynamics, Causal loop
diagrams

Visual Paradigm5, Miro6

Choose KPIs KPI templates Fatima et al. [13]

Prioritize goals Market dynamics analysis, empirical
studies, quantitative simulations

Vensim3

Plan Requirements engineering and
validation

Requirements templates,
issue tracking systems

5. Conclusion
In this article, we proposed a novel, sustainability-first software development and delivery
framework, SusDevOps. The framework defines an integrated lifecycle model based on
well-established DevOps principles. Through the case of a software development startup
company, we demonstrated the utility of the proposed framework, its alignment with standard
software development and operation processes, and recommended techniques and tools to
cover the various sustainability-related stages of the lifecycle.

6 https://miro.com/
5 https://www.visual-paradigm.com/
4 https://www.un.org/en/climatechange/science/climate-issues/greenwashing

https://miro.com/
https://www.visual-paradigm.com/
https://www.un.org/en/climatechange/science/climate-issues/greenwashing

Of course, SusDevOps is no silver bullet and might not serve as a blueprint for every software
project, but it provides a reasonably general, yet applicable framework to organize team effort
around delivering sustainable software. It is important that adopters maintain a pragmatic
standpoint and implement SusDevOps through techniques and tools that fit their goals, skills,
and organizational capabilities.

Acknowledgments
The author would like to thank Dominik Bork (TU Vienna, Austria) for his feedback on this
article.

References
[1] L. Belkhir and A. Elmeligi, “Assessing ICT global emissions footprint: Trends to 2040 &
recommendations,” Journal of Cleaner Production, vol. 177. Elsevier BV, pp. 448–463, Mar.
2018. doi: 10.1016/j.jclepro.2017.12.239.
[2] B. Penzenstadler, A. Raturi, D. Richardson and B. Tomlinson, "Safety, Security, Now
Sustainability: The Nonfunctional Requirement for the 21st Century" in IEEE Software, vol. 31,
no. 03, pp. 40-47, 2014. doi: 10.1109/MS.2014.22
[3] B. Penzenstadler et al., "Software Engineering for Sustainability: Find the Leverage Points!,"
in IEEE Software, vol. 35, no. 4, pp. 22-33, July/August 2018, doi:
10.1109/MS.2018.110154908.
[4] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing sustainability as a property
of software quality,” Communications of the ACM, vol. 58, no. 10. Association for Computing
Machinery (ACM), pp. 70–78, Sep. 28, 2015. doi: 10.1145/2714560.
[5] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, "DevOps," in IEEE Software, vol. 33, no.
3, pp. 94-100, May-June 2016, doi: 10.1109/MS.2016.68.
[6] J. Alonso, R. Piliszek and M. Cankar, "Embracing IaC Through the DevSecOps Philosophy:
Concepts, Challenges, and a Reference Framework," in IEEE Software, vol. 40, no. 1, pp.
56-62, Jan.-Feb. 2023, doi: 10.1109/MS.2022.3212194.
[7] V. Gruhn and C. Schäfer, “BizDevOps: Because DevOps is Not the End of the Story,”
Communications in Computer and Information Science. Springer International Publishing, pp.
388–398, 2015. doi: 10.1007/978-3-319-22689-7_30.
[8] D. Kreuzberger, N. Kühl and S. Hirschl, "Machine Learning Operations (MLOps): Overview,
Definition, and Architecture," in IEEE Access, vol. 11, pp. 31866-31879, 2023, doi:
10.1109/ACCESS.2023.3262138.
[9] B. Penzenstadler and H. Femmer, “A generic model for sustainability with process- and
product-specific instances,” Proceedings of the 2013 workshop on Green in/by software
engineering. ACM, Mar. 26, 2013. doi: 10.1145/2451605.2451609.
[10] I. David and D. Bork, “Towards a Taxonomy of Digital Twin Evolution for Technical
Sustainability,” Proceedings of the ACM/IEEE 26th International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS 2023 Companion. IEEE, 2023.
[11] G. Kalaitzoglou, M. Bruntink, and J. Visser, “A Practical Model for Evaluating the Energy
Efficiency of Software Applications,” Proceedings of the 2014 conference ICT for Sustainability.
Atlantis Press, 2014. doi: 10.2991/ict4s-14.2014.9.

[12] D. Parmenter, Key performance indicators: developing, implementing, and using winning
KPIs. John Wiley & Sons, 2015.
[13] I. Fatima, M. Funke, and P. Lago, “From Goals to Actions: Providing Guidance to Software
Practitioners with KPIs”, Authorea Preprints, 2023.
[14] C. Becker, et al., "Requirements: The Key to Sustainability" in IEEE Software, vol. 33, no.
01, pp. 56-65, 2016. doi: 10.1109/MS.2015.158
[15] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” Communications of the
ACM, vol. 63, no. 12. Association for Computing Machinery (ACM), pp. 54–63, Nov. 17, 2020.
doi: 10.1145/3381831.

Istvan David is an Assistant Professor of Computer Science at McMaster University, Canada,
where he leads the Sustainable Systems and Methods Lab. His research focuses on modeling
and simulation of complex systems, with a particular interest in sustainability of
software-intensive systems. He is active outside of academia as well, mainly in consulting
companies along their digital transformation and sustainability transformation processes.
Contact him at istvan.david@mcmaster.ca.

